|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Evaluation executable for detection models. |
|
|
|
This executable is used to evaluate DetectionModels. Example usage: |
|
./eval \ |
|
--logtostderr \ |
|
--checkpoint_dir=path/to/checkpoint_dir \ |
|
--eval_dir=path/to/eval_dir \ |
|
--pipeline_config_path=pipeline_config.pbtxt |
|
""" |
|
|
|
import functools |
|
import os |
|
import tensorflow.compat.v1 as tf |
|
from google.protobuf import text_format |
|
from lstm_object_detection import evaluator |
|
from lstm_object_detection import model_builder |
|
from lstm_object_detection.inputs import seq_dataset_builder |
|
from lstm_object_detection.utils import config_util |
|
from object_detection.utils import label_map_util |
|
|
|
tf.logging.set_verbosity(tf.logging.INFO) |
|
flags = tf.app.flags |
|
flags.DEFINE_boolean('eval_training_data', False, |
|
'If training data should be evaluated for this job.') |
|
flags.DEFINE_string('checkpoint_dir', '', |
|
'Directory containing checkpoints to evaluate, typically ' |
|
'set to `train_dir` used in the training job.') |
|
flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.') |
|
flags.DEFINE_string('pipeline_config_path', '', |
|
'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' |
|
'file. If provided, other configs are ignored') |
|
flags.DEFINE_boolean('run_once', False, 'Option to only run a single pass of ' |
|
'evaluation. Overrides the `max_evals` parameter in the ' |
|
'provided config.') |
|
FLAGS = flags.FLAGS |
|
|
|
|
|
def main(unused_argv): |
|
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' |
|
assert FLAGS.eval_dir, '`eval_dir` is missing.' |
|
if FLAGS.pipeline_config_path: |
|
configs = config_util.get_configs_from_pipeline_file( |
|
FLAGS.pipeline_config_path) |
|
else: |
|
configs = config_util.get_configs_from_multiple_files( |
|
model_config_path=FLAGS.model_config_path, |
|
eval_config_path=FLAGS.eval_config_path, |
|
eval_input_config_path=FLAGS.input_config_path) |
|
|
|
pipeline_proto = config_util.create_pipeline_proto_from_configs(configs) |
|
config_text = text_format.MessageToString(pipeline_proto) |
|
tf.gfile.MakeDirs(FLAGS.eval_dir) |
|
with tf.gfile.Open(os.path.join(FLAGS.eval_dir, 'pipeline.config'), |
|
'wb') as f: |
|
f.write(config_text) |
|
|
|
model_config = configs['model'] |
|
lstm_config = configs['lstm_model'] |
|
eval_config = configs['eval_config'] |
|
input_config = configs['eval_input_config'] |
|
|
|
if FLAGS.eval_training_data: |
|
input_config.external_input_reader.CopyFrom( |
|
configs['train_input_config'].external_input_reader) |
|
lstm_config.eval_unroll_length = lstm_config.train_unroll_length |
|
|
|
model_fn = functools.partial( |
|
model_builder.build, |
|
model_config=model_config, |
|
lstm_config=lstm_config, |
|
is_training=False) |
|
|
|
def get_next(config, model_config, lstm_config, unroll_length): |
|
return seq_dataset_builder.build(config, model_config, lstm_config, |
|
unroll_length) |
|
|
|
create_input_dict_fn = functools.partial(get_next, input_config, model_config, |
|
lstm_config, |
|
lstm_config.eval_unroll_length) |
|
|
|
label_map = label_map_util.load_labelmap(input_config.label_map_path) |
|
max_num_classes = max([item.id for item in label_map.item]) |
|
categories = label_map_util.convert_label_map_to_categories( |
|
label_map, max_num_classes) |
|
|
|
if FLAGS.run_once: |
|
eval_config.max_evals = 1 |
|
|
|
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, |
|
FLAGS.checkpoint_dir, FLAGS.eval_dir) |
|
|
|
if __name__ == '__main__': |
|
tf.app.run() |
|
|