|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Author: aneelakantan (Arvind Neelakantan) |
|
""" |
|
|
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
import nn_utils |
|
|
|
|
|
class Graph(): |
|
|
|
def __init__(self, utility, batch_size, max_passes, mode="train"): |
|
self.utility = utility |
|
self.data_type = self.utility.tf_data_type[self.utility.FLAGS.data_type] |
|
self.max_elements = self.utility.FLAGS.max_elements |
|
max_elements = self.utility.FLAGS.max_elements |
|
self.num_cols = self.utility.FLAGS.max_number_cols |
|
self.num_word_cols = self.utility.FLAGS.max_word_cols |
|
self.question_length = self.utility.FLAGS.question_length |
|
self.batch_size = batch_size |
|
self.max_passes = max_passes |
|
self.mode = mode |
|
self.embedding_dims = self.utility.FLAGS.embedding_dims |
|
|
|
self.batch_question = tf.placeholder(tf.int32, |
|
[batch_size, self.question_length]) |
|
self.batch_question_attention_mask = tf.placeholder( |
|
self.data_type, [batch_size, self.question_length]) |
|
|
|
self.batch_answer = tf.placeholder(self.data_type, [batch_size]) |
|
self.batch_print_answer = tf.placeholder( |
|
self.data_type, |
|
[batch_size, self.num_cols + self.num_word_cols, max_elements]) |
|
|
|
self.batch_number_column = tf.placeholder( |
|
self.data_type, [batch_size, self.num_cols, max_elements |
|
]) |
|
self.batch_processed_number_column = tf.placeholder( |
|
self.data_type, [batch_size, self.num_cols, max_elements]) |
|
self.batch_processed_sorted_index_number_column = tf.placeholder( |
|
tf.int32, [batch_size, self.num_cols, max_elements]) |
|
|
|
self.batch_processed_word_column = tf.placeholder( |
|
self.data_type, [batch_size, self.num_word_cols, max_elements]) |
|
self.batch_processed_sorted_index_word_column = tf.placeholder( |
|
tf.int32, [batch_size, self.num_word_cols, max_elements]) |
|
self.batch_word_column_entry_mask = tf.placeholder( |
|
tf.int32, [batch_size, self.num_word_cols, max_elements]) |
|
|
|
self.batch_word_column_names = tf.placeholder( |
|
tf.int32, |
|
[batch_size, self.num_word_cols, self.utility.FLAGS.max_entry_length]) |
|
self.batch_word_column_mask = tf.placeholder( |
|
self.data_type, [batch_size, self.num_word_cols]) |
|
self.batch_number_column_names = tf.placeholder( |
|
tf.int32, |
|
[batch_size, self.num_cols, self.utility.FLAGS.max_entry_length]) |
|
self.batch_number_column_mask = tf.placeholder(self.data_type, |
|
[batch_size, self.num_cols]) |
|
|
|
self.batch_exact_match = tf.placeholder( |
|
self.data_type, |
|
[batch_size, self.num_cols + self.num_word_cols, max_elements]) |
|
self.batch_column_exact_match = tf.placeholder( |
|
self.data_type, [batch_size, self.num_cols + self.num_word_cols]) |
|
self.batch_group_by_max = tf.placeholder( |
|
self.data_type, |
|
[batch_size, self.num_cols + self.num_word_cols, max_elements]) |
|
|
|
self.batch_question_number = tf.placeholder(self.data_type, [batch_size, 1]) |
|
self.batch_question_number_one = tf.placeholder(self.data_type, |
|
[batch_size, 1]) |
|
self.batch_question_number_mask = tf.placeholder( |
|
self.data_type, [batch_size, max_elements]) |
|
self.batch_question_number_one_mask = tf.placeholder(self.data_type, |
|
[batch_size, 1]) |
|
self.batch_ordinal_question = tf.placeholder( |
|
self.data_type, [batch_size, self.question_length]) |
|
self.batch_ordinal_question_one = tf.placeholder( |
|
self.data_type, [batch_size, self.question_length]) |
|
|
|
def LSTM_question_embedding(self, sentence, sentence_length): |
|
|
|
lstm_params = "question_lstm" |
|
hidden_vectors = [] |
|
sentence = self.batch_question |
|
question_hidden = tf.zeros( |
|
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type) |
|
question_c_hidden = tf.zeros( |
|
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type) |
|
if (self.utility.FLAGS.rnn_dropout > 0.0): |
|
if (self.mode == "train"): |
|
rnn_dropout_mask = tf.cast( |
|
tf.random_uniform( |
|
tf.shape(question_hidden), minval=0.0, maxval=1.0) < |
|
self.utility.FLAGS.rnn_dropout, |
|
self.data_type) / self.utility.FLAGS.rnn_dropout |
|
else: |
|
rnn_dropout_mask = tf.ones_like(question_hidden) |
|
for question_iterator in range(self.question_length): |
|
curr_word = sentence[:, question_iterator] |
|
question_vector = nn_utils.apply_dropout( |
|
nn_utils.get_embedding(curr_word, self.utility, self.params), |
|
self.utility.FLAGS.dropout, self.mode) |
|
question_hidden, question_c_hidden = nn_utils.LSTMCell( |
|
question_vector, question_hidden, question_c_hidden, lstm_params, |
|
self.params) |
|
if (self.utility.FLAGS.rnn_dropout > 0.0): |
|
question_hidden = question_hidden * rnn_dropout_mask |
|
hidden_vectors.append(tf.expand_dims(question_hidden, 0)) |
|
hidden_vectors = tf.concat(axis=0, values=hidden_vectors) |
|
return question_hidden, hidden_vectors |
|
|
|
def history_recurrent_step(self, curr_hprev, hprev): |
|
|
|
return tf.tanh( |
|
tf.matmul( |
|
tf.concat(axis=1, values=[hprev, curr_hprev]), self.params[ |
|
"history_recurrent"])) + self.params["history_recurrent_bias"] |
|
|
|
def question_number_softmax(self, hidden_vectors): |
|
|
|
def compute_ans(op_embedding, comparison): |
|
op_embedding = tf.expand_dims(op_embedding, 0) |
|
|
|
first = tf.transpose( |
|
tf.matmul(op_embedding, |
|
tf.transpose( |
|
tf.reduce_sum(hidden_vectors * tf.tile( |
|
tf.expand_dims( |
|
tf.transpose(self.batch_ordinal_question), 2), |
|
[1, 1, self.utility.FLAGS.embedding_dims]), 0)))) |
|
second = self.batch_question_number_one_mask + tf.transpose( |
|
tf.matmul(op_embedding, |
|
tf.transpose( |
|
tf.reduce_sum(hidden_vectors * tf.tile( |
|
tf.expand_dims( |
|
tf.transpose(self.batch_ordinal_question_one), 2 |
|
), [1, 1, self.utility.FLAGS.embedding_dims]), 0)))) |
|
question_number_softmax = tf.nn.softmax(tf.concat(axis=1, values=[first, second])) |
|
if (self.mode == "test"): |
|
cond = tf.equal(question_number_softmax, |
|
tf.reshape( |
|
tf.reduce_max(question_number_softmax, 1), |
|
[self.batch_size, 1])) |
|
question_number_softmax = tf.where( |
|
cond, |
|
tf.fill(tf.shape(question_number_softmax), 1.0), |
|
tf.fill(tf.shape(question_number_softmax), 0.0)) |
|
question_number_softmax = tf.cast(question_number_softmax, |
|
self.data_type) |
|
ans = tf.reshape( |
|
tf.reduce_sum(question_number_softmax * tf.concat( |
|
axis=1, values=[self.batch_question_number, self.batch_question_number_one]), |
|
1), [self.batch_size, 1]) |
|
return ans |
|
|
|
def compute_op_position(op_name): |
|
for i in range(len(self.utility.operations_set)): |
|
if (op_name == self.utility.operations_set[i]): |
|
return i |
|
|
|
def compute_question_number(op_name): |
|
op_embedding = tf.nn.embedding_lookup(self.params_unit, |
|
compute_op_position(op_name)) |
|
return compute_ans(op_embedding, op_name) |
|
|
|
curr_greater_question_number = compute_question_number("greater") |
|
curr_lesser_question_number = compute_question_number("lesser") |
|
curr_geq_question_number = compute_question_number("geq") |
|
curr_leq_question_number = compute_question_number("leq") |
|
return curr_greater_question_number, curr_lesser_question_number, curr_geq_question_number, curr_leq_question_number |
|
|
|
def perform_attention(self, context_vector, hidden_vectors, length, mask): |
|
|
|
context_vector = tf.tile( |
|
tf.expand_dims(context_vector, 0), [length, 1, 1]) |
|
attention_softmax = tf.nn.softmax( |
|
tf.transpose(tf.reduce_sum(context_vector * hidden_vectors, 2)) + |
|
mask) |
|
attention_softmax = tf.tile( |
|
tf.expand_dims(tf.transpose(attention_softmax), 2), |
|
[1, 1, self.embedding_dims]) |
|
ans_vector = tf.reduce_sum(attention_softmax * hidden_vectors, 0) |
|
return ans_vector |
|
|
|
|
|
def get_column_hidden_vectors(self): |
|
|
|
self.column_hidden_vectors = tf.reduce_sum( |
|
nn_utils.get_embedding(self.batch_number_column_names, self.utility, |
|
self.params), 2) |
|
self.word_column_hidden_vectors = tf.reduce_sum( |
|
nn_utils.get_embedding(self.batch_word_column_names, self.utility, |
|
self.params), 2) |
|
|
|
def create_summary_embeddings(self): |
|
|
|
self.summary_text_entry_embeddings = tf.reduce_sum( |
|
tf.expand_dims(self.batch_exact_match, 3) * tf.expand_dims( |
|
tf.expand_dims( |
|
tf.expand_dims( |
|
nn_utils.get_embedding(self.utility.entry_match_token_id, |
|
self.utility, self.params), 0), 1), |
|
2), 2) |
|
|
|
def compute_column_softmax(self, column_controller_vector, time_step): |
|
|
|
column_controller_vector = tf.tile( |
|
tf.expand_dims(column_controller_vector, 1), |
|
[1, self.num_cols + self.num_word_cols, 1]) |
|
column_controller_vector = nn_utils.apply_dropout( |
|
column_controller_vector, self.utility.FLAGS.dropout, self.mode) |
|
self.full_column_hidden_vectors = tf.concat( |
|
axis=1, values=[self.column_hidden_vectors, self.word_column_hidden_vectors]) |
|
self.full_column_hidden_vectors += self.summary_text_entry_embeddings |
|
self.full_column_hidden_vectors = nn_utils.apply_dropout( |
|
self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode) |
|
column_logits = tf.reduce_sum( |
|
column_controller_vector * self.full_column_hidden_vectors, 2) + ( |
|
self.params["word_match_feature_column_name"] * |
|
self.batch_column_exact_match) + self.full_column_mask |
|
column_softmax = tf.nn.softmax(column_logits) |
|
return column_softmax |
|
|
|
def compute_first_or_last(self, select, first=True): |
|
|
|
answer = tf.zeros_like(select) |
|
running_sum = tf.zeros([self.batch_size, 1], self.data_type) |
|
for i in range(self.max_elements): |
|
if (first): |
|
current = tf.slice(select, [0, i], [self.batch_size, 1]) |
|
else: |
|
current = tf.slice(select, [0, self.max_elements - 1 - i], |
|
[self.batch_size, 1]) |
|
curr_prob = current * (1 - running_sum) |
|
curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type) |
|
running_sum += curr_prob |
|
temp_ans = [] |
|
curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0) |
|
for i_ans in range(self.max_elements): |
|
if (not (first) and i_ans == self.max_elements - 1 - i): |
|
temp_ans.append(curr_prob) |
|
elif (first and i_ans == i): |
|
temp_ans.append(curr_prob) |
|
else: |
|
temp_ans.append(tf.zeros_like(curr_prob)) |
|
temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans)) |
|
answer += temp_ans |
|
return answer |
|
|
|
def make_hard_softmax(self, softmax): |
|
|
|
cond = tf.equal( |
|
softmax, tf.reshape(tf.reduce_max(softmax, 1), [self.batch_size, 1])) |
|
softmax = tf.where( |
|
cond, tf.fill(tf.shape(softmax), 1.0), tf.fill(tf.shape(softmax), 0.0)) |
|
softmax = tf.cast(softmax, self.data_type) |
|
return softmax |
|
|
|
def compute_max_or_min(self, select, maxi=True): |
|
|
|
answer = tf.zeros([ |
|
self.batch_size, self.num_cols + self.num_word_cols, self.max_elements |
|
], self.data_type) |
|
sum_prob = tf.zeros([self.batch_size, self.num_cols + self.num_word_cols], |
|
self.data_type) |
|
for j in range(self.max_elements): |
|
if (maxi): |
|
curr_pos = j |
|
else: |
|
curr_pos = self.max_elements - 1 - j |
|
select_index = tf.slice(self.full_processed_sorted_index_column, |
|
[0, 0, curr_pos], [self.batch_size, -1, 1]) |
|
select_mask = tf.equal( |
|
tf.tile( |
|
tf.expand_dims( |
|
tf.tile( |
|
tf.expand_dims(tf.range(self.max_elements), 0), |
|
[self.batch_size, 1]), 1), |
|
[1, self.num_cols + self.num_word_cols, 1]), select_index) |
|
curr_prob = tf.expand_dims(select, 1) * tf.cast( |
|
select_mask, self.data_type) * self.select_bad_number_mask |
|
curr_prob = curr_prob * tf.expand_dims((1 - sum_prob), 2) |
|
curr_prob = curr_prob * tf.expand_dims( |
|
tf.cast((1 - sum_prob) > 0.0, self.data_type), 2) |
|
answer = tf.where(select_mask, curr_prob, answer) |
|
sum_prob += tf.reduce_sum(curr_prob, 2) |
|
return answer |
|
|
|
def perform_operations(self, softmax, full_column_softmax, select, |
|
prev_select_1, curr_pass): |
|
|
|
column_softmax = tf.slice(full_column_softmax, [0, 0], |
|
[self.batch_size, self.num_cols]) |
|
word_column_softmax = tf.slice(full_column_softmax, [0, self.num_cols], |
|
[self.batch_size, self.num_word_cols]) |
|
init_max = self.compute_max_or_min(select, maxi=True) |
|
init_min = self.compute_max_or_min(select, maxi=False) |
|
|
|
count = tf.reshape(tf.reduce_sum(select, 1), [self.batch_size, 1]) |
|
select_full_column_softmax = tf.tile( |
|
tf.expand_dims(full_column_softmax, 2), |
|
[1, 1, self.max_elements |
|
]) |
|
select_word_column_softmax = tf.tile( |
|
tf.expand_dims(word_column_softmax, 2), |
|
[1, 1, self.max_elements]) |
|
select_greater = tf.reduce_sum( |
|
self.init_select_greater * select_full_column_softmax, |
|
1) * self.batch_question_number_mask |
|
select_lesser = tf.reduce_sum( |
|
self.init_select_lesser * select_full_column_softmax, |
|
1) * self.batch_question_number_mask |
|
select_geq = tf.reduce_sum( |
|
self.init_select_geq * select_full_column_softmax, |
|
1) * self.batch_question_number_mask |
|
select_leq = tf.reduce_sum( |
|
self.init_select_leq * select_full_column_softmax, |
|
1) * self.batch_question_number_mask |
|
select_max = tf.reduce_sum(init_max * select_full_column_softmax, |
|
1) |
|
select_min = tf.reduce_sum(init_min * select_full_column_softmax, |
|
1) |
|
select_prev = tf.concat(axis=1, values=[ |
|
tf.slice(select, [0, 1], [self.batch_size, self.max_elements - 1]), |
|
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type) |
|
]) |
|
select_next = tf.concat(axis=1, values=[ |
|
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type), tf.slice( |
|
select, [0, 0], [self.batch_size, self.max_elements - 1]) |
|
]) |
|
select_last_rs = self.compute_first_or_last(select, False) |
|
select_first_rs = self.compute_first_or_last(select, True) |
|
select_word_match = tf.reduce_sum(self.batch_exact_match * |
|
select_full_column_softmax, 1) |
|
select_group_by_max = tf.reduce_sum(self.batch_group_by_max * |
|
select_full_column_softmax, 1) |
|
length_content = 1 |
|
length_select = 13 |
|
length_print = 1 |
|
values = tf.concat(axis=1, values=[count]) |
|
softmax_content = tf.slice(softmax, [0, 0], |
|
[self.batch_size, length_content]) |
|
|
|
output = tf.reduce_sum(tf.multiply(softmax_content, values), 1) |
|
|
|
softmax_print = tf.slice(softmax, [0, length_content + length_select], |
|
[self.batch_size, length_print]) |
|
curr_print = select_full_column_softmax * tf.tile( |
|
tf.expand_dims(select, 1), |
|
[1, self.num_cols + self.num_word_cols, 1 |
|
]) |
|
self.batch_lookup_answer = curr_print * tf.tile( |
|
tf.expand_dims(softmax_print, 2), |
|
[1, self.num_cols + self.num_word_cols, self.max_elements |
|
]) |
|
self.batch_lookup_answer = self.batch_lookup_answer * self.select_full_mask |
|
|
|
softmax_select = tf.slice(softmax, [0, length_content], |
|
[self.batch_size, length_select]) |
|
select_lists = [ |
|
tf.expand_dims(select_prev, 1), tf.expand_dims(select_next, 1), |
|
tf.expand_dims(select_first_rs, 1), tf.expand_dims(select_last_rs, 1), |
|
tf.expand_dims(select_group_by_max, 1), |
|
tf.expand_dims(select_greater, 1), tf.expand_dims(select_lesser, 1), |
|
tf.expand_dims(select_geq, 1), tf.expand_dims(select_leq, 1), |
|
tf.expand_dims(select_max, 1), tf.expand_dims(select_min, 1), |
|
tf.expand_dims(select_word_match, 1), |
|
tf.expand_dims(self.reset_select, 1) |
|
] |
|
select = tf.reduce_sum( |
|
tf.tile(tf.expand_dims(softmax_select, 2), [1, 1, self.max_elements]) * |
|
tf.concat(axis=1, values=select_lists), 1) |
|
select = select * self.select_whole_mask |
|
return output, select |
|
|
|
def one_pass(self, select, question_embedding, hidden_vectors, hprev, |
|
prev_select_1, curr_pass): |
|
|
|
attention_vector = self.perform_attention( |
|
hprev, hidden_vectors, self.question_length, |
|
self.batch_question_attention_mask) |
|
controller_vector = tf.nn.relu( |
|
tf.matmul(hprev, self.params["controller_prev"]) + tf.matmul( |
|
tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[ |
|
"controller"])) |
|
column_controller_vector = tf.nn.relu( |
|
tf.matmul(hprev, self.params["column_controller_prev"]) + tf.matmul( |
|
tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[ |
|
"column_controller"])) |
|
controller_vector = nn_utils.apply_dropout( |
|
controller_vector, self.utility.FLAGS.dropout, self.mode) |
|
self.operation_logits = tf.matmul(controller_vector, |
|
tf.transpose(self.params_unit)) |
|
softmax = tf.nn.softmax(self.operation_logits) |
|
soft_softmax = softmax |
|
|
|
weighted_op_representation = tf.transpose( |
|
tf.matmul(tf.transpose(self.params_unit), tf.transpose(softmax))) |
|
column_controller_vector = tf.nn.relu( |
|
tf.matmul( |
|
tf.concat(axis=1, values=[ |
|
column_controller_vector, weighted_op_representation |
|
]), self.params["break_conditional"])) |
|
full_column_softmax = self.compute_column_softmax(column_controller_vector, |
|
curr_pass) |
|
soft_column_softmax = full_column_softmax |
|
if (self.mode == "test"): |
|
full_column_softmax = self.make_hard_softmax(full_column_softmax) |
|
softmax = self.make_hard_softmax(softmax) |
|
output, select = self.perform_operations(softmax, full_column_softmax, |
|
select, prev_select_1, curr_pass) |
|
return output, select, softmax, soft_softmax, full_column_softmax, soft_column_softmax |
|
|
|
def compute_lookup_error(self, val): |
|
|
|
cond = tf.equal(self.batch_print_answer, val) |
|
inter = tf.where( |
|
cond, self.init_print_error, |
|
tf.tile( |
|
tf.reshape(tf.constant(1e10, self.data_type), [1, 1, 1]), [ |
|
self.batch_size, self.utility.FLAGS.max_word_cols + |
|
self.utility.FLAGS.max_number_cols, |
|
self.utility.FLAGS.max_elements |
|
])) |
|
return tf.reduce_min(tf.reduce_min(inter, 1), 1) * tf.cast( |
|
tf.greater( |
|
tf.reduce_sum(tf.reduce_sum(tf.cast(cond, self.data_type), 1), 1), |
|
0.0), self.data_type) |
|
|
|
def soft_min(self, x, y): |
|
return tf.maximum(-1.0 * (1 / ( |
|
self.utility.FLAGS.soft_min_value + 0.0)) * tf.log( |
|
tf.exp(-self.utility.FLAGS.soft_min_value * x) + tf.exp( |
|
-self.utility.FLAGS.soft_min_value * y)), tf.zeros_like(x)) |
|
|
|
def error_computation(self): |
|
|
|
math_error = 0.5 * tf.square(tf.subtract(self.scalar_output, self.batch_answer)) |
|
|
|
math_error = math_error / self.rows |
|
math_error = tf.minimum(math_error, self.utility.FLAGS.max_math_error * |
|
tf.ones(tf.shape(math_error), self.data_type)) |
|
self.init_print_error = tf.where( |
|
self.batch_gold_select, -1 * tf.log(self.batch_lookup_answer + 1e-300 + |
|
self.invert_select_full_mask), -1 * |
|
tf.log(1 - self.batch_lookup_answer)) * self.select_full_mask |
|
print_error_1 = self.init_print_error * tf.cast( |
|
tf.equal(self.batch_print_answer, 0.0), self.data_type) |
|
print_error = tf.reduce_sum(tf.reduce_sum((print_error_1), 1), 1) |
|
for val in range(1, 58): |
|
print_error += self.compute_lookup_error(val + 0.0) |
|
print_error = print_error * self.utility.FLAGS.print_cost / self.num_entries |
|
if (self.mode == "train"): |
|
error = tf.where( |
|
tf.logical_and( |
|
tf.not_equal(self.batch_answer, 0.0), |
|
tf.not_equal( |
|
tf.reduce_sum(tf.reduce_sum(self.batch_print_answer, 1), 1), |
|
0.0)), |
|
self.soft_min(math_error, print_error), |
|
tf.where( |
|
tf.not_equal(self.batch_answer, 0.0), math_error, print_error)) |
|
else: |
|
error = tf.where( |
|
tf.logical_and( |
|
tf.equal(self.scalar_output, 0.0), |
|
tf.equal( |
|
tf.reduce_sum(tf.reduce_sum(self.batch_lookup_answer, 1), 1), |
|
0.0)), |
|
tf.ones_like(math_error), |
|
tf.where( |
|
tf.equal(self.scalar_output, 0.0), print_error, math_error)) |
|
return error |
|
|
|
def batch_process(self): |
|
|
|
self.params_unit = nn_utils.apply_dropout( |
|
self.params["unit"], self.utility.FLAGS.dropout, self.mode) |
|
batch_size = self.batch_size |
|
max_passes = self.max_passes |
|
num_timesteps = 1 |
|
max_elements = self.max_elements |
|
select = tf.cast( |
|
tf.fill([self.batch_size, max_elements], 1.0), self.data_type) |
|
hprev = tf.cast( |
|
tf.fill([self.batch_size, self.embedding_dims], 0.0), |
|
self.data_type) |
|
output = tf.cast(tf.fill([self.batch_size, 1], 0.0), |
|
self.data_type) |
|
correct = tf.cast( |
|
tf.fill([1], 0.0), self.data_type |
|
) |
|
total_error = 0.0 |
|
prev_select_1 = tf.zeros_like(select) |
|
self.create_summary_embeddings() |
|
self.get_column_hidden_vectors() |
|
|
|
question_embedding, hidden_vectors = self.LSTM_question_embedding( |
|
self.batch_question, self.question_length) |
|
|
|
greater_question_number, lesser_question_number, geq_question_number, leq_question_number = self.question_number_softmax( |
|
hidden_vectors) |
|
self.init_select_greater = tf.cast( |
|
tf.greater(self.full_processed_column, |
|
tf.expand_dims(greater_question_number, 2)), self. |
|
data_type) * self.select_bad_number_mask |
|
self.init_select_lesser = tf.cast( |
|
tf.less(self.full_processed_column, |
|
tf.expand_dims(lesser_question_number, 2)), self. |
|
data_type) * self.select_bad_number_mask |
|
self.init_select_geq = tf.cast( |
|
tf.greater_equal(self.full_processed_column, |
|
tf.expand_dims(geq_question_number, 2)), self. |
|
data_type) * self.select_bad_number_mask |
|
self.init_select_leq = tf.cast( |
|
tf.less_equal(self.full_processed_column, |
|
tf.expand_dims(leq_question_number, 2)), self. |
|
data_type) * self.select_bad_number_mask |
|
self.init_select_word_match = 0 |
|
if (self.utility.FLAGS.rnn_dropout > 0.0): |
|
if (self.mode == "train"): |
|
history_rnn_dropout_mask = tf.cast( |
|
tf.random_uniform( |
|
tf.shape(hprev), minval=0.0, maxval=1.0) < |
|
self.utility.FLAGS.rnn_dropout, |
|
self.data_type) / self.utility.FLAGS.rnn_dropout |
|
else: |
|
history_rnn_dropout_mask = tf.ones_like(hprev) |
|
select = select * self.select_whole_mask |
|
self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type) |
|
|
|
for curr_pass in range(max_passes): |
|
print("step: ", curr_pass) |
|
output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass( |
|
select, question_embedding, hidden_vectors, hprev, prev_select_1, |
|
curr_pass) |
|
prev_select_1 = select |
|
|
|
input_op = tf.transpose( |
|
tf.matmul( |
|
tf.transpose(self.params_unit), tf.transpose( |
|
soft_softmax))) |
|
input_col = tf.reduce_sum( |
|
tf.expand_dims(soft_column_softmax, 2) * |
|
self.full_column_hidden_vectors, 1) |
|
history_input = tf.concat(axis=1, values=[input_op, input_col]) |
|
history_input = nn_utils.apply_dropout( |
|
history_input, self.utility.FLAGS.dropout, self.mode) |
|
hprev = self.history_recurrent_step(history_input, hprev) |
|
if (self.utility.FLAGS.rnn_dropout > 0.0): |
|
hprev = hprev * history_rnn_dropout_mask |
|
self.scalar_output = output |
|
error = self.error_computation() |
|
cond = tf.less(error, 0.0001, name="cond") |
|
correct_add = tf.where( |
|
cond, tf.fill(tf.shape(cond), 1.0), tf.fill(tf.shape(cond), 0.0)) |
|
correct = tf.reduce_sum(correct_add) |
|
error = error / batch_size |
|
total_error = tf.reduce_sum(error) |
|
total_correct = correct / batch_size |
|
return total_error, total_correct |
|
|
|
def compute_error(self): |
|
|
|
self.batch_gold_select = self.batch_print_answer > 0.0 |
|
self.full_column_mask = tf.concat( |
|
axis=1, values=[self.batch_number_column_mask, self.batch_word_column_mask]) |
|
self.full_processed_column = tf.concat( |
|
axis=1, |
|
values=[self.batch_processed_number_column, self.batch_processed_word_column]) |
|
self.full_processed_sorted_index_column = tf.concat(axis=1, values=[ |
|
self.batch_processed_sorted_index_number_column, |
|
self.batch_processed_sorted_index_word_column |
|
]) |
|
self.select_bad_number_mask = tf.cast( |
|
tf.logical_and( |
|
tf.not_equal(self.full_processed_column, |
|
self.utility.FLAGS.pad_int), |
|
tf.not_equal(self.full_processed_column, |
|
self.utility.FLAGS.bad_number_pre_process)), |
|
self.data_type) |
|
self.select_mask = tf.cast( |
|
tf.logical_not( |
|
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int)), |
|
self.data_type) |
|
self.select_word_mask = tf.cast( |
|
tf.logical_not( |
|
tf.equal(self.batch_word_column_entry_mask, |
|
self.utility.dummy_token_id)), self.data_type) |
|
self.select_full_mask = tf.concat( |
|
axis=1, values=[self.select_mask, self.select_word_mask]) |
|
self.select_whole_mask = tf.maximum( |
|
tf.reshape( |
|
tf.slice(self.select_mask, [0, 0, 0], |
|
[self.batch_size, 1, self.max_elements]), |
|
[self.batch_size, self.max_elements]), |
|
tf.reshape( |
|
tf.slice(self.select_word_mask, [0, 0, 0], |
|
[self.batch_size, 1, self.max_elements]), |
|
[self.batch_size, self.max_elements])) |
|
self.invert_select_full_mask = tf.cast( |
|
tf.concat(axis=1, values=[ |
|
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int), |
|
tf.equal(self.batch_word_column_entry_mask, |
|
self.utility.dummy_token_id) |
|
]), self.data_type) |
|
self.batch_lookup_answer = tf.zeros(tf.shape(self.batch_gold_select)) |
|
self.reset_select = self.select_whole_mask |
|
self.rows = tf.reduce_sum(self.select_whole_mask, 1) |
|
self.num_entries = tf.reshape( |
|
tf.reduce_sum(tf.reduce_sum(self.select_full_mask, 1), 1), |
|
[self.batch_size]) |
|
self.final_error, self.final_correct = self.batch_process() |
|
return self.final_error |
|
|
|
def create_graph(self, params, global_step): |
|
|
|
self.params = params |
|
batch_size = self.batch_size |
|
learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type) |
|
self.total_cost = self.compute_error() |
|
optimize_params = self.params.values() |
|
optimize_names = self.params.keys() |
|
print("optimize params ", optimize_names) |
|
if (self.utility.FLAGS.l2_regularizer > 0.0): |
|
reg_cost = 0.0 |
|
for ind_param in self.params.keys(): |
|
reg_cost += tf.nn.l2_loss(self.params[ind_param]) |
|
self.total_cost += self.utility.FLAGS.l2_regularizer * reg_cost |
|
grads = tf.gradients(self.total_cost, optimize_params, name="gradients") |
|
grad_norm = 0.0 |
|
for p, name in zip(grads, optimize_names): |
|
print("grads: ", p, name) |
|
if isinstance(p, tf.IndexedSlices): |
|
grad_norm += tf.reduce_sum(p.values * p.values) |
|
elif not (p == None): |
|
grad_norm += tf.reduce_sum(p * p) |
|
grad_norm = tf.sqrt(grad_norm) |
|
max_grad_norm = np.float32(self.utility.FLAGS.clip_gradients).astype( |
|
self.utility.np_data_type[self.utility.FLAGS.data_type]) |
|
grad_scale = tf.minimum( |
|
tf.cast(1.0, self.data_type), max_grad_norm / grad_norm) |
|
clipped_grads = list() |
|
for p in grads: |
|
if isinstance(p, tf.IndexedSlices): |
|
tmp = p.values * grad_scale |
|
clipped_grads.append(tf.IndexedSlices(tmp, p.indices)) |
|
elif not (p == None): |
|
clipped_grads.append(p * grad_scale) |
|
else: |
|
clipped_grads.append(p) |
|
grads = clipped_grads |
|
self.global_step = global_step |
|
params_list = self.params.values() |
|
params_list.append(self.global_step) |
|
adam = tf.train.AdamOptimizer( |
|
learning_rate, |
|
epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type), |
|
use_locking=True) |
|
self.step = adam.apply_gradients(zip(grads, optimize_params), |
|
global_step=self.global_step) |
|
self.init_op = tf.global_variables_initializer() |
|
|