|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""AutoAugment util file.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import inspect |
|
import math |
|
import six |
|
import tensorflow.compat.v1 as tf |
|
|
|
|
|
try: |
|
from tensorflow.contrib import image as contrib_image |
|
from tensorflow.contrib import training as contrib_training |
|
except ImportError: |
|
|
|
pass |
|
|
|
|
|
|
|
|
|
_MAX_LEVEL = 10. |
|
|
|
|
|
|
|
|
|
_INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]] |
|
|
|
|
|
def policy_v0(): |
|
"""Autoaugment policy that was used in AutoAugment Detection Paper.""" |
|
|
|
|
|
|
|
policy = [ |
|
[('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)], |
|
[('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)], |
|
[('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)], |
|
[('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)], |
|
[('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)], |
|
] |
|
return policy |
|
|
|
|
|
def policy_v1(): |
|
"""Autoaugment policy that was used in AutoAugment Detection Paper.""" |
|
|
|
|
|
|
|
policy = [ |
|
[('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)], |
|
[('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)], |
|
[('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)], |
|
[('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)], |
|
[('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)], |
|
[('Color', 0.0, 0), ('ShearX_Only_BBoxes', 0.8, 4)], |
|
[('ShearY_Only_BBoxes', 0.8, 2), ('Flip_Only_BBoxes', 0.0, 10)], |
|
[('Equalize', 0.6, 10), ('TranslateX_BBox', 0.2, 2)], |
|
[('Color', 1.0, 10), ('TranslateY_Only_BBoxes', 0.4, 6)], |
|
[('Rotate_BBox', 0.8, 10), ('Contrast', 0.0, 10)], |
|
[('Cutout', 0.2, 2), ('Brightness', 0.8, 10)], |
|
[('Color', 1.0, 6), ('Equalize', 1.0, 2)], |
|
[('Cutout_Only_BBoxes', 0.4, 6), ('TranslateY_Only_BBoxes', 0.8, 2)], |
|
[('Color', 0.2, 8), ('Rotate_BBox', 0.8, 10)], |
|
[('Sharpness', 0.4, 4), ('TranslateY_Only_BBoxes', 0.0, 4)], |
|
[('Sharpness', 1.0, 4), ('SolarizeAdd', 0.4, 4)], |
|
[('Rotate_BBox', 1.0, 8), ('Sharpness', 0.2, 8)], |
|
[('ShearY_BBox', 0.6, 10), ('Equalize_Only_BBoxes', 0.6, 8)], |
|
[('ShearX_BBox', 0.2, 6), ('TranslateY_Only_BBoxes', 0.2, 10)], |
|
[('SolarizeAdd', 0.6, 8), ('Brightness', 0.8, 10)], |
|
] |
|
return policy |
|
|
|
|
|
def policy_vtest(): |
|
"""Autoaugment test policy for debugging.""" |
|
|
|
|
|
|
|
policy = [ |
|
[('TranslateX_BBox', 1.0, 4), ('Equalize', 1.0, 10)], |
|
] |
|
return policy |
|
|
|
|
|
def policy_v2(): |
|
"""Additional policy that performs well on object detection.""" |
|
|
|
|
|
|
|
policy = [ |
|
[('Color', 0.0, 6), ('Cutout', 0.6, 8), ('Sharpness', 0.4, 8)], |
|
[('Rotate_BBox', 0.4, 8), ('Sharpness', 0.4, 2), |
|
('Rotate_BBox', 0.8, 10)], |
|
[('TranslateY_BBox', 1.0, 8), ('AutoContrast', 0.8, 2)], |
|
[('AutoContrast', 0.4, 6), ('ShearX_BBox', 0.8, 8), |
|
('Brightness', 0.0, 10)], |
|
[('SolarizeAdd', 0.2, 6), ('Contrast', 0.0, 10), |
|
('AutoContrast', 0.6, 0)], |
|
[('Cutout', 0.2, 0), ('Solarize', 0.8, 8), ('Color', 1.0, 4)], |
|
[('TranslateY_BBox', 0.0, 4), ('Equalize', 0.6, 8), |
|
('Solarize', 0.0, 10)], |
|
[('TranslateY_BBox', 0.2, 2), ('ShearY_BBox', 0.8, 8), |
|
('Rotate_BBox', 0.8, 8)], |
|
[('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)], |
|
[('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6), ('Rotate_BBox', 0.6, 6)], |
|
[('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4), ('Cutout', 0.2, 8)], |
|
[('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6), ('ShearY_BBox', 0.6, 8)], |
|
[('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2), |
|
('Brightness', 0.2, 2)], |
|
[('TranslateY_BBox', 0.4, 8), ('Solarize', 0.4, 6), |
|
('SolarizeAdd', 0.2, 10)], |
|
[('Contrast', 1.0, 10), ('SolarizeAdd', 0.2, 8), ('Equalize', 0.2, 4)], |
|
] |
|
return policy |
|
|
|
|
|
def policy_v3(): |
|
""""Additional policy that performs well on object detection.""" |
|
|
|
|
|
|
|
policy = [ |
|
[('Posterize', 0.8, 2), ('TranslateX_BBox', 1.0, 8)], |
|
[('BBox_Cutout', 0.2, 10), ('Sharpness', 1.0, 8)], |
|
[('Rotate_BBox', 0.6, 8), ('Rotate_BBox', 0.8, 10)], |
|
[('Equalize', 0.8, 10), ('AutoContrast', 0.2, 10)], |
|
[('SolarizeAdd', 0.2, 2), ('TranslateY_BBox', 0.2, 8)], |
|
[('Sharpness', 0.0, 2), ('Color', 0.4, 8)], |
|
[('Equalize', 1.0, 8), ('TranslateY_BBox', 1.0, 8)], |
|
[('Posterize', 0.6, 2), ('Rotate_BBox', 0.0, 10)], |
|
[('AutoContrast', 0.6, 0), ('Rotate_BBox', 1.0, 6)], |
|
[('Equalize', 0.0, 4), ('Cutout', 0.8, 10)], |
|
[('Brightness', 1.0, 2), ('TranslateY_BBox', 1.0, 6)], |
|
[('Contrast', 0.0, 2), ('ShearY_BBox', 0.8, 0)], |
|
[('AutoContrast', 0.8, 10), ('Contrast', 0.2, 10)], |
|
[('Rotate_BBox', 1.0, 10), ('Cutout', 1.0, 10)], |
|
[('SolarizeAdd', 0.8, 6), ('Equalize', 0.8, 8)], |
|
] |
|
return policy |
|
|
|
|
|
def blend(image1, image2, factor): |
|
"""Blend image1 and image2 using 'factor'. |
|
|
|
Factor can be above 0.0. A value of 0.0 means only image1 is used. |
|
A value of 1.0 means only image2 is used. A value between 0.0 and |
|
1.0 means we linearly interpolate the pixel values between the two |
|
images. A value greater than 1.0 "extrapolates" the difference |
|
between the two pixel values, and we clip the results to values |
|
between 0 and 255. |
|
|
|
Args: |
|
image1: An image Tensor of type uint8. |
|
image2: An image Tensor of type uint8. |
|
factor: A floating point value above 0.0. |
|
|
|
Returns: |
|
A blended image Tensor of type uint8. |
|
""" |
|
if factor == 0.0: |
|
return tf.convert_to_tensor(image1) |
|
if factor == 1.0: |
|
return tf.convert_to_tensor(image2) |
|
|
|
image1 = tf.to_float(image1) |
|
image2 = tf.to_float(image2) |
|
|
|
difference = image2 - image1 |
|
scaled = factor * difference |
|
|
|
|
|
temp = tf.to_float(image1) + scaled |
|
|
|
|
|
if factor > 0.0 and factor < 1.0: |
|
|
|
return tf.cast(temp, tf.uint8) |
|
|
|
|
|
|
|
|
|
return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8) |
|
|
|
|
|
def cutout(image, pad_size, replace=0): |
|
"""Apply cutout (https://arxiv.org/abs/1708.04552) to image. |
|
|
|
This operation applies a (2*pad_size x 2*pad_size) mask of zeros to |
|
a random location within `img`. The pixel values filled in will be of the |
|
value `replace`. The located where the mask will be applied is randomly |
|
chosen uniformly over the whole image. |
|
|
|
Args: |
|
image: An image Tensor of type uint8. |
|
pad_size: Specifies how big the zero mask that will be generated is that |
|
is applied to the image. The mask will be of size |
|
(2*pad_size x 2*pad_size). |
|
replace: What pixel value to fill in the image in the area that has |
|
the cutout mask applied to it. |
|
|
|
Returns: |
|
An image Tensor that is of type uint8. |
|
""" |
|
image_height = tf.shape(image)[0] |
|
image_width = tf.shape(image)[1] |
|
|
|
|
|
cutout_center_height = tf.random_uniform( |
|
shape=[], minval=0, maxval=image_height, |
|
dtype=tf.int32) |
|
|
|
cutout_center_width = tf.random_uniform( |
|
shape=[], minval=0, maxval=image_width, |
|
dtype=tf.int32) |
|
|
|
lower_pad = tf.maximum(0, cutout_center_height - pad_size) |
|
upper_pad = tf.maximum(0, image_height - cutout_center_height - pad_size) |
|
left_pad = tf.maximum(0, cutout_center_width - pad_size) |
|
right_pad = tf.maximum(0, image_width - cutout_center_width - pad_size) |
|
|
|
cutout_shape = [image_height - (lower_pad + upper_pad), |
|
image_width - (left_pad + right_pad)] |
|
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]] |
|
mask = tf.pad( |
|
tf.zeros(cutout_shape, dtype=image.dtype), |
|
padding_dims, constant_values=1) |
|
mask = tf.expand_dims(mask, -1) |
|
mask = tf.tile(mask, [1, 1, 3]) |
|
image = tf.where( |
|
tf.equal(mask, 0), |
|
tf.ones_like(image, dtype=image.dtype) * replace, |
|
image) |
|
return image |
|
|
|
|
|
def solarize(image, threshold=128): |
|
|
|
|
|
|
|
return tf.where(image < threshold, image, 255 - image) |
|
|
|
|
|
def solarize_add(image, addition=0, threshold=128): |
|
|
|
|
|
|
|
|
|
added_image = tf.cast(image, tf.int64) + addition |
|
added_image = tf.cast(tf.clip_by_value(added_image, 0, 255), tf.uint8) |
|
return tf.where(image < threshold, added_image, image) |
|
|
|
|
|
def color(image, factor): |
|
"""Equivalent of PIL Color.""" |
|
degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image)) |
|
return blend(degenerate, image, factor) |
|
|
|
|
|
def contrast(image, factor): |
|
"""Equivalent of PIL Contrast.""" |
|
degenerate = tf.image.rgb_to_grayscale(image) |
|
|
|
degenerate = tf.cast(degenerate, tf.int32) |
|
|
|
|
|
|
|
|
|
hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256) |
|
mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0 |
|
degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean |
|
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) |
|
degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8)) |
|
return blend(degenerate, image, factor) |
|
|
|
|
|
def brightness(image, factor): |
|
"""Equivalent of PIL Brightness.""" |
|
degenerate = tf.zeros_like(image) |
|
return blend(degenerate, image, factor) |
|
|
|
|
|
def posterize(image, bits): |
|
"""Equivalent of PIL Posterize.""" |
|
shift = 8 - bits |
|
return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift) |
|
|
|
|
|
def rotate(image, degrees, replace): |
|
"""Rotates the image by degrees either clockwise or counterclockwise. |
|
|
|
Args: |
|
image: An image Tensor of type uint8. |
|
degrees: Float, a scalar angle in degrees to rotate all images by. If |
|
degrees is positive the image will be rotated clockwise otherwise it will |
|
be rotated counterclockwise. |
|
replace: A one or three value 1D tensor to fill empty pixels caused by |
|
the rotate operation. |
|
|
|
Returns: |
|
The rotated version of image. |
|
""" |
|
|
|
degrees_to_radians = math.pi / 180.0 |
|
radians = degrees * degrees_to_radians |
|
|
|
|
|
|
|
|
|
image = contrib_image.rotate(wrap(image), radians) |
|
return unwrap(image, replace) |
|
|
|
|
|
def random_shift_bbox(image, bbox, pixel_scaling, replace, |
|
new_min_bbox_coords=None): |
|
"""Move the bbox and the image content to a slightly new random location. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x) |
|
of type float that represents the normalized coordinates between 0 and 1. |
|
The potential values for the new min corner of the bbox will be between |
|
[old_min - pixel_scaling * bbox_height/2, |
|
old_min - pixel_scaling * bbox_height/2]. |
|
pixel_scaling: A float between 0 and 1 that specifies the pixel range |
|
that the new bbox location will be sampled from. |
|
replace: A one or three value 1D tensor to fill empty pixels. |
|
new_min_bbox_coords: If not None, then this is a tuple that specifies the |
|
(min_y, min_x) coordinates of the new bbox. Normally this is randomly |
|
specified, but this allows it to be manually set. The coordinates are |
|
the absolute coordinates between 0 and image height/width and are int32. |
|
|
|
Returns: |
|
The new image that will have the shifted bbox location in it along with |
|
the new bbox that contains the new coordinates. |
|
""" |
|
|
|
image_height = tf.to_float(tf.shape(image)[0]) |
|
image_width = tf.to_float(tf.shape(image)[1]) |
|
def clip_y(val): |
|
return tf.clip_by_value(val, 0, tf.to_int32(image_height) - 1) |
|
def clip_x(val): |
|
return tf.clip_by_value(val, 0, tf.to_int32(image_width) - 1) |
|
|
|
|
|
min_y = tf.to_int32(image_height * bbox[0]) |
|
min_x = tf.to_int32(image_width * bbox[1]) |
|
max_y = clip_y(tf.to_int32(image_height * bbox[2])) |
|
max_x = clip_x(tf.to_int32(image_width * bbox[3])) |
|
bbox_height, bbox_width = (max_y - min_y + 1, max_x - min_x + 1) |
|
image_height = tf.to_int32(image_height) |
|
image_width = tf.to_int32(image_width) |
|
|
|
|
|
|
|
minval_y = clip_y( |
|
min_y - tf.to_int32(pixel_scaling * tf.to_float(bbox_height) / 2.0)) |
|
maxval_y = clip_y( |
|
min_y + tf.to_int32(pixel_scaling * tf.to_float(bbox_height) / 2.0)) |
|
minval_x = clip_x( |
|
min_x - tf.to_int32(pixel_scaling * tf.to_float(bbox_width) / 2.0)) |
|
maxval_x = clip_x( |
|
min_x + tf.to_int32(pixel_scaling * tf.to_float(bbox_width) / 2.0)) |
|
|
|
|
|
if new_min_bbox_coords is None: |
|
unclipped_new_min_y = tf.random_uniform( |
|
shape=[], minval=minval_y, maxval=maxval_y, |
|
dtype=tf.int32) |
|
unclipped_new_min_x = tf.random_uniform( |
|
shape=[], minval=minval_x, maxval=maxval_x, |
|
dtype=tf.int32) |
|
else: |
|
unclipped_new_min_y, unclipped_new_min_x = ( |
|
clip_y(new_min_bbox_coords[0]), clip_x(new_min_bbox_coords[1])) |
|
unclipped_new_max_y = unclipped_new_min_y + bbox_height - 1 |
|
unclipped_new_max_x = unclipped_new_min_x + bbox_width - 1 |
|
|
|
|
|
|
|
|
|
new_min_y, new_min_x, new_max_y, new_max_x = ( |
|
clip_y(unclipped_new_min_y), clip_x(unclipped_new_min_x), |
|
clip_y(unclipped_new_max_y), clip_x(unclipped_new_max_x)) |
|
shifted_min_y = (new_min_y - unclipped_new_min_y) + min_y |
|
shifted_max_y = max_y - (unclipped_new_max_y - new_max_y) |
|
shifted_min_x = (new_min_x - unclipped_new_min_x) + min_x |
|
shifted_max_x = max_x - (unclipped_new_max_x - new_max_x) |
|
|
|
|
|
new_bbox = tf.stack([ |
|
tf.to_float(new_min_y) / tf.to_float(image_height), |
|
tf.to_float(new_min_x) / tf.to_float(image_width), |
|
tf.to_float(new_max_y) / tf.to_float(image_height), |
|
tf.to_float(new_max_x) / tf.to_float(image_width)]) |
|
|
|
|
|
|
|
bbox_content = image[shifted_min_y:shifted_max_y + 1, |
|
shifted_min_x:shifted_max_x + 1, :] |
|
|
|
def mask_and_add_image( |
|
min_y_, min_x_, max_y_, max_x_, mask, content_tensor, image_): |
|
"""Applies mask to bbox region in image then adds content_tensor to it.""" |
|
mask = tf.pad(mask, |
|
[[min_y_, (image_height - 1) - max_y_], |
|
[min_x_, (image_width - 1) - max_x_], |
|
[0, 0]], constant_values=1) |
|
content_tensor = tf.pad(content_tensor, |
|
[[min_y_, (image_height - 1) - max_y_], |
|
[min_x_, (image_width - 1) - max_x_], |
|
[0, 0]], constant_values=0) |
|
return image_ * mask + content_tensor |
|
|
|
|
|
mask = tf.zeros_like(image)[min_y:max_y+1, min_x:max_x+1, :] |
|
grey_tensor = tf.zeros_like(mask) + replace[0] |
|
image = mask_and_add_image(min_y, min_x, max_y, max_x, mask, |
|
grey_tensor, image) |
|
|
|
|
|
mask = tf.zeros_like(bbox_content) |
|
image = mask_and_add_image(new_min_y, new_min_x, new_max_y, new_max_x, mask, |
|
bbox_content, image) |
|
|
|
return image, new_bbox |
|
|
|
|
|
def _clip_bbox(min_y, min_x, max_y, max_x): |
|
"""Clip bounding box coordinates between 0 and 1. |
|
|
|
Args: |
|
min_y: Normalized bbox coordinate of type float between 0 and 1. |
|
min_x: Normalized bbox coordinate of type float between 0 and 1. |
|
max_y: Normalized bbox coordinate of type float between 0 and 1. |
|
max_x: Normalized bbox coordinate of type float between 0 and 1. |
|
|
|
Returns: |
|
Clipped coordinate values between 0 and 1. |
|
""" |
|
min_y = tf.clip_by_value(min_y, 0.0, 1.0) |
|
min_x = tf.clip_by_value(min_x, 0.0, 1.0) |
|
max_y = tf.clip_by_value(max_y, 0.0, 1.0) |
|
max_x = tf.clip_by_value(max_x, 0.0, 1.0) |
|
return min_y, min_x, max_y, max_x |
|
|
|
|
|
def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05): |
|
"""Adjusts bbox coordinates to make sure the area is > 0. |
|
|
|
Args: |
|
min_y: Normalized bbox coordinate of type float between 0 and 1. |
|
min_x: Normalized bbox coordinate of type float between 0 and 1. |
|
max_y: Normalized bbox coordinate of type float between 0 and 1. |
|
max_x: Normalized bbox coordinate of type float between 0 and 1. |
|
delta: Float, this is used to create a gap of size 2 * delta between |
|
bbox min/max coordinates that are the same on the boundary. |
|
This prevents the bbox from having an area of zero. |
|
|
|
Returns: |
|
Tuple of new bbox coordinates between 0 and 1 that will now have a |
|
guaranteed area > 0. |
|
""" |
|
height = max_y - min_y |
|
width = max_x - min_x |
|
def _adjust_bbox_boundaries(min_coord, max_coord): |
|
|
|
max_coord = tf.maximum(max_coord, 0.0 + delta) |
|
min_coord = tf.minimum(min_coord, 1.0 - delta) |
|
return min_coord, max_coord |
|
min_y, max_y = tf.cond(tf.equal(height, 0.0), |
|
lambda: _adjust_bbox_boundaries(min_y, max_y), |
|
lambda: (min_y, max_y)) |
|
min_x, max_x = tf.cond(tf.equal(width, 0.0), |
|
lambda: _adjust_bbox_boundaries(min_x, max_x), |
|
lambda: (min_x, max_x)) |
|
return min_y, min_x, max_y, max_x |
|
|
|
|
|
def _scale_bbox_only_op_probability(prob): |
|
"""Reduce the probability of the bbox-only operation. |
|
|
|
Probability is reduced so that we do not distort the content of too many |
|
bounding boxes that are close to each other. The value of 3.0 was a chosen |
|
hyper parameter when designing the autoaugment algorithm that we found |
|
empirically to work well. |
|
|
|
Args: |
|
prob: Float that is the probability of applying the bbox-only operation. |
|
|
|
Returns: |
|
Reduced probability. |
|
""" |
|
return prob / 3.0 |
|
|
|
|
|
def _apply_bbox_augmentation(image, bbox, augmentation_func, *args): |
|
"""Applies augmentation_func to the subsection of image indicated by bbox. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x) |
|
of type float that represents the normalized coordinates between 0 and 1. |
|
augmentation_func: Augmentation function that will be applied to the |
|
subsection of image. |
|
*args: Additional parameters that will be passed into augmentation_func |
|
when it is called. |
|
|
|
Returns: |
|
A modified version of image, where the bbox location in the image will |
|
have `ugmentation_func applied to it. |
|
""" |
|
image_height = tf.to_float(tf.shape(image)[0]) |
|
image_width = tf.to_float(tf.shape(image)[1]) |
|
min_y = tf.to_int32(image_height * bbox[0]) |
|
min_x = tf.to_int32(image_width * bbox[1]) |
|
max_y = tf.to_int32(image_height * bbox[2]) |
|
max_x = tf.to_int32(image_width * bbox[3]) |
|
image_height = tf.to_int32(image_height) |
|
image_width = tf.to_int32(image_width) |
|
|
|
|
|
max_y = tf.minimum(max_y, image_height - 1) |
|
max_x = tf.minimum(max_x, image_width - 1) |
|
|
|
|
|
bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :] |
|
|
|
|
|
augmented_bbox_content = augmentation_func(bbox_content, *args) |
|
|
|
|
|
|
|
augmented_bbox_content = tf.pad(augmented_bbox_content, |
|
[[min_y, (image_height - 1) - max_y], |
|
[min_x, (image_width - 1) - max_x], |
|
[0, 0]]) |
|
|
|
|
|
mask_tensor = tf.zeros_like(bbox_content) |
|
|
|
mask_tensor = tf.pad(mask_tensor, |
|
[[min_y, (image_height - 1) - max_y], |
|
[min_x, (image_width - 1) - max_x], |
|
[0, 0]], |
|
constant_values=1) |
|
|
|
image = image * mask_tensor + augmented_bbox_content |
|
return image |
|
|
|
|
|
def _concat_bbox(bbox, bboxes): |
|
"""Helper function that concates bbox to bboxes along the first dimension.""" |
|
|
|
|
|
|
|
bboxes_sum_check = tf.reduce_sum(bboxes) |
|
bbox = tf.expand_dims(bbox, 0) |
|
|
|
bboxes = tf.cond(tf.equal(bboxes_sum_check, -4.0), |
|
lambda: bbox, |
|
lambda: tf.concat([bboxes, bbox], 0)) |
|
return bboxes |
|
|
|
|
|
def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob, |
|
augmentation_func, func_changes_bbox, |
|
*args): |
|
"""Applies _apply_bbox_augmentation with probability prob. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x) |
|
of type float that represents the normalized coordinates between 0 and 1. |
|
new_bboxes: 2D Tensor that is a list of the bboxes in the image after they |
|
have been altered by aug_func. These will only be changed when |
|
func_changes_bbox is set to true. Each bbox has 4 elements |
|
(min_y, min_x, max_y, max_x) of type float that are the normalized |
|
bbox coordinates between 0 and 1. |
|
prob: Float that is the probability of applying _apply_bbox_augmentation. |
|
augmentation_func: Augmentation function that will be applied to the |
|
subsection of image. |
|
func_changes_bbox: Boolean. Does augmentation_func return bbox in addition |
|
to image. |
|
*args: Additional parameters that will be passed into augmentation_func |
|
when it is called. |
|
|
|
Returns: |
|
A tuple. Fist element is a modified version of image, where the bbox |
|
location in the image will have augmentation_func applied to it if it is |
|
chosen to be called with probability `prob`. The second element is a |
|
Tensor of Tensors of length 4 that will contain the altered bbox after |
|
applying augmentation_func. |
|
""" |
|
should_apply_op = tf.cast( |
|
tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool) |
|
if func_changes_bbox: |
|
augmented_image, bbox = tf.cond( |
|
should_apply_op, |
|
lambda: augmentation_func(image, bbox, *args), |
|
lambda: (image, bbox)) |
|
else: |
|
augmented_image = tf.cond( |
|
should_apply_op, |
|
lambda: _apply_bbox_augmentation(image, bbox, augmentation_func, *args), |
|
lambda: image) |
|
new_bboxes = _concat_bbox(bbox, new_bboxes) |
|
return augmented_image, new_bboxes |
|
|
|
|
|
def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func, |
|
func_changes_bbox, *args): |
|
"""Applies aug_func to the image for each bbox in bboxes. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox |
|
has 4 elements (min_y, min_x, max_y, max_x) of type float. |
|
prob: Float that is the probability of applying aug_func to a specific |
|
bounding box within the image. |
|
aug_func: Augmentation function that will be applied to the |
|
subsections of image indicated by the bbox values in bboxes. |
|
func_changes_bbox: Boolean. Does augmentation_func return bbox in addition |
|
to image. |
|
*args: Additional parameters that will be passed into augmentation_func |
|
when it is called. |
|
|
|
Returns: |
|
A modified version of image, where each bbox location in the image will |
|
have augmentation_func applied to it if it is chosen to be called with |
|
probability prob independently across all bboxes. Also the final |
|
bboxes are returned that will be unchanged if func_changes_bbox is set to |
|
false and if true, the new altered ones will be returned. |
|
""" |
|
|
|
|
|
|
|
new_bboxes = tf.constant(_INVALID_BOX) |
|
|
|
|
|
|
|
bboxes = tf.cond(tf.equal(tf.size(bboxes), 0), |
|
lambda: tf.constant(_INVALID_BOX), |
|
lambda: bboxes) |
|
|
|
bboxes = tf.ensure_shape(bboxes, (None, 4)) |
|
|
|
|
|
|
|
wrapped_aug_func = lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper( |
|
_image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args) |
|
|
|
|
|
|
|
|
|
num_bboxes = tf.shape(bboxes)[0] |
|
idx = tf.constant(0) |
|
|
|
|
|
|
|
cond = lambda _idx, _images_and_bboxes: tf.less(_idx, num_bboxes) |
|
|
|
|
|
|
|
if not func_changes_bbox: |
|
loop_bboxes = tf.random.shuffle(bboxes) |
|
else: |
|
loop_bboxes = bboxes |
|
|
|
|
|
|
|
|
|
body = lambda _idx, _images_and_bboxes: [ |
|
_idx + 1, wrapped_aug_func(_images_and_bboxes[0], |
|
loop_bboxes[_idx], |
|
_images_and_bboxes[1])] |
|
|
|
|
|
_, (image, new_bboxes) = tf.while_loop( |
|
cond, body, [idx, (image, new_bboxes)], |
|
shape_invariants=[idx.get_shape(), |
|
(image.get_shape(), tf.TensorShape([None, 4]))]) |
|
|
|
|
|
|
|
if func_changes_bbox: |
|
final_bboxes = new_bboxes |
|
else: |
|
final_bboxes = bboxes |
|
return image, final_bboxes |
|
|
|
|
|
def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func, |
|
func_changes_bbox, *args): |
|
"""Checks to be sure num bboxes > 0 before calling inner function.""" |
|
num_bboxes = tf.shape(bboxes)[0] |
|
image, bboxes = tf.cond( |
|
tf.equal(num_bboxes, 0), |
|
lambda: (image, bboxes), |
|
|
|
lambda: _apply_multi_bbox_augmentation( |
|
image, bboxes, prob, aug_func, func_changes_bbox, *args)) |
|
|
|
return image, bboxes |
|
|
|
|
|
def rotate_only_bboxes(image, bboxes, prob, degrees, replace): |
|
"""Apply rotate to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, rotate, func_changes_bbox, degrees, replace) |
|
|
|
|
|
def shear_x_only_bboxes(image, bboxes, prob, level, replace): |
|
"""Apply shear_x to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, shear_x, func_changes_bbox, level, replace) |
|
|
|
|
|
def shear_y_only_bboxes(image, bboxes, prob, level, replace): |
|
"""Apply shear_y to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, shear_y, func_changes_bbox, level, replace) |
|
|
|
|
|
def translate_x_only_bboxes(image, bboxes, prob, pixels, replace): |
|
"""Apply translate_x to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, translate_x, func_changes_bbox, pixels, replace) |
|
|
|
|
|
def translate_y_only_bboxes(image, bboxes, prob, pixels, replace): |
|
"""Apply translate_y to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace) |
|
|
|
|
|
def flip_only_bboxes(image, bboxes, prob): |
|
"""Apply flip_lr to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, tf.image.flip_left_right, func_changes_bbox) |
|
|
|
|
|
def solarize_only_bboxes(image, bboxes, prob, threshold): |
|
"""Apply solarize to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, solarize, func_changes_bbox, threshold) |
|
|
|
|
|
def equalize_only_bboxes(image, bboxes, prob): |
|
"""Apply equalize to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, equalize, func_changes_bbox) |
|
|
|
|
|
def cutout_only_bboxes(image, bboxes, prob, pad_size, replace): |
|
"""Apply cutout to each bbox in the image with probability prob.""" |
|
func_changes_bbox = False |
|
prob = _scale_bbox_only_op_probability(prob) |
|
return _apply_multi_bbox_augmentation_wrapper( |
|
image, bboxes, prob, cutout, func_changes_bbox, pad_size, replace) |
|
|
|
|
|
def _rotate_bbox(bbox, image_height, image_width, degrees): |
|
"""Rotates the bbox coordinated by degrees. |
|
|
|
Args: |
|
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x) |
|
of type float that represents the normalized coordinates between 0 and 1. |
|
image_height: Int, height of the image. |
|
image_width: Int, height of the image. |
|
degrees: Float, a scalar angle in degrees to rotate all images by. If |
|
degrees is positive the image will be rotated clockwise otherwise it will |
|
be rotated counterclockwise. |
|
|
|
Returns: |
|
A tensor of the same shape as bbox, but now with the rotated coordinates. |
|
""" |
|
image_height, image_width = ( |
|
tf.to_float(image_height), tf.to_float(image_width)) |
|
|
|
|
|
degrees_to_radians = math.pi / 180.0 |
|
radians = degrees * degrees_to_radians |
|
|
|
|
|
|
|
|
|
|
|
|
|
min_y = -tf.to_int32(image_height * (bbox[0] - 0.5)) |
|
min_x = tf.to_int32(image_width * (bbox[1] - 0.5)) |
|
max_y = -tf.to_int32(image_height * (bbox[2] - 0.5)) |
|
max_x = tf.to_int32(image_width * (bbox[3] - 0.5)) |
|
coordinates = tf.stack( |
|
[[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]]) |
|
coordinates = tf.cast(coordinates, tf.float32) |
|
|
|
|
|
rotation_matrix = tf.stack( |
|
[[tf.cos(radians), tf.sin(radians)], |
|
[-tf.sin(radians), tf.cos(radians)]]) |
|
new_coords = tf.cast( |
|
tf.matmul(rotation_matrix, tf.transpose(coordinates)), tf.int32) |
|
|
|
min_y = -(tf.to_float(tf.reduce_max(new_coords[0, :])) / image_height - 0.5) |
|
min_x = tf.to_float(tf.reduce_min(new_coords[1, :])) / image_width + 0.5 |
|
max_y = -(tf.to_float(tf.reduce_min(new_coords[0, :])) / image_height - 0.5) |
|
max_x = tf.to_float(tf.reduce_max(new_coords[1, :])) / image_width + 0.5 |
|
|
|
|
|
min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x) |
|
min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x) |
|
return tf.stack([min_y, min_x, max_y, max_x]) |
|
|
|
|
|
def rotate_with_bboxes(image, bboxes, degrees, replace): |
|
"""Equivalent of PIL Rotate that rotates the image and bbox. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox |
|
has 4 elements (min_y, min_x, max_y, max_x) of type float. |
|
degrees: Float, a scalar angle in degrees to rotate all images by. If |
|
degrees is positive the image will be rotated clockwise otherwise it will |
|
be rotated counterclockwise. |
|
replace: A one or three value 1D tensor to fill empty pixels. |
|
|
|
Returns: |
|
A tuple containing a 3D uint8 Tensor that will be the result of rotating |
|
image by degrees. The second element of the tuple is bboxes, where now |
|
the coordinates will be shifted to reflect the rotated image. |
|
""" |
|
|
|
image = rotate(image, degrees, replace) |
|
|
|
|
|
image_height = tf.shape(image)[0] |
|
image_width = tf.shape(image)[1] |
|
|
|
wrapped_rotate_bbox = lambda bbox: _rotate_bbox( |
|
bbox, image_height, image_width, degrees) |
|
|
|
bboxes = tf.map_fn(wrapped_rotate_bbox, bboxes) |
|
return image, bboxes |
|
|
|
|
|
def translate_x(image, pixels, replace): |
|
"""Equivalent of PIL Translate in X dimension.""" |
|
image = contrib_image.translate(wrap(image), [-pixels, 0]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def translate_y(image, pixels, replace): |
|
"""Equivalent of PIL Translate in Y dimension.""" |
|
image = contrib_image.translate(wrap(image), [0, -pixels]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal): |
|
"""Shifts the bbox coordinates by pixels. |
|
|
|
Args: |
|
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x) |
|
of type float that represents the normalized coordinates between 0 and 1. |
|
image_height: Int, height of the image. |
|
image_width: Int, width of the image. |
|
pixels: An int. How many pixels to shift the bbox. |
|
shift_horizontal: Boolean. If true then shift in X dimension else shift in |
|
Y dimension. |
|
|
|
Returns: |
|
A tensor of the same shape as bbox, but now with the shifted coordinates. |
|
""" |
|
pixels = tf.to_int32(pixels) |
|
|
|
min_y = tf.to_int32(tf.to_float(image_height) * bbox[0]) |
|
min_x = tf.to_int32(tf.to_float(image_width) * bbox[1]) |
|
max_y = tf.to_int32(tf.to_float(image_height) * bbox[2]) |
|
max_x = tf.to_int32(tf.to_float(image_width) * bbox[3]) |
|
|
|
if shift_horizontal: |
|
min_x = tf.maximum(0, min_x - pixels) |
|
max_x = tf.minimum(image_width, max_x - pixels) |
|
else: |
|
min_y = tf.maximum(0, min_y - pixels) |
|
max_y = tf.minimum(image_height, max_y - pixels) |
|
|
|
|
|
min_y = tf.to_float(min_y) / tf.to_float(image_height) |
|
min_x = tf.to_float(min_x) / tf.to_float(image_width) |
|
max_y = tf.to_float(max_y) / tf.to_float(image_height) |
|
max_x = tf.to_float(max_x) / tf.to_float(image_width) |
|
|
|
|
|
min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x) |
|
min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x) |
|
return tf.stack([min_y, min_x, max_y, max_x]) |
|
|
|
|
|
def translate_bbox(image, bboxes, pixels, replace, shift_horizontal): |
|
"""Equivalent of PIL Translate in X/Y dimension that shifts image and bbox. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox |
|
has 4 elements (min_y, min_x, max_y, max_x) of type float with values |
|
between [0, 1]. |
|
pixels: An int. How many pixels to shift the image and bboxes |
|
replace: A one or three value 1D tensor to fill empty pixels. |
|
shift_horizontal: Boolean. If true then shift in X dimension else shift in |
|
Y dimension. |
|
|
|
Returns: |
|
A tuple containing a 3D uint8 Tensor that will be the result of translating |
|
image by pixels. The second element of the tuple is bboxes, where now |
|
the coordinates will be shifted to reflect the shifted image. |
|
""" |
|
if shift_horizontal: |
|
image = translate_x(image, pixels, replace) |
|
else: |
|
image = translate_y(image, pixels, replace) |
|
|
|
|
|
image_height = tf.shape(image)[0] |
|
image_width = tf.shape(image)[1] |
|
|
|
wrapped_shift_bbox = lambda bbox: _shift_bbox( |
|
bbox, image_height, image_width, pixels, shift_horizontal) |
|
|
|
bboxes = tf.map_fn(wrapped_shift_bbox, bboxes) |
|
return image, bboxes |
|
|
|
|
|
def shear_x(image, level, replace): |
|
"""Equivalent of PIL Shearing in X dimension.""" |
|
|
|
|
|
|
|
|
|
image = contrib_image.transform( |
|
wrap(image), [1., level, 0., 0., 1., 0., 0., 0.]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def shear_y(image, level, replace): |
|
"""Equivalent of PIL Shearing in Y dimension.""" |
|
|
|
|
|
|
|
|
|
image = contrib_image.transform( |
|
wrap(image), [1., 0., 0., level, 1., 0., 0., 0.]) |
|
return unwrap(image, replace) |
|
|
|
|
|
def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal): |
|
"""Shifts the bbox according to how the image was sheared. |
|
|
|
Args: |
|
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x) |
|
of type float that represents the normalized coordinates between 0 and 1. |
|
image_height: Int, height of the image. |
|
image_width: Int, height of the image. |
|
level: Float. How much to shear the image. |
|
shear_horizontal: If true then shear in X dimension else shear in |
|
the Y dimension. |
|
|
|
Returns: |
|
A tensor of the same shape as bbox, but now with the shifted coordinates. |
|
""" |
|
image_height, image_width = ( |
|
tf.to_float(image_height), tf.to_float(image_width)) |
|
|
|
|
|
min_y = tf.to_int32(image_height * bbox[0]) |
|
min_x = tf.to_int32(image_width * bbox[1]) |
|
max_y = tf.to_int32(image_height * bbox[2]) |
|
max_x = tf.to_int32(image_width * bbox[3]) |
|
coordinates = tf.stack( |
|
[[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]]) |
|
coordinates = tf.cast(coordinates, tf.float32) |
|
|
|
|
|
if shear_horizontal: |
|
translation_matrix = tf.stack( |
|
[[1, 0], [-level, 1]]) |
|
else: |
|
translation_matrix = tf.stack( |
|
[[1, -level], [0, 1]]) |
|
translation_matrix = tf.cast(translation_matrix, tf.float32) |
|
new_coords = tf.cast( |
|
tf.matmul(translation_matrix, tf.transpose(coordinates)), tf.int32) |
|
|
|
|
|
min_y = tf.to_float(tf.reduce_min(new_coords[0, :])) / image_height |
|
min_x = tf.to_float(tf.reduce_min(new_coords[1, :])) / image_width |
|
max_y = tf.to_float(tf.reduce_max(new_coords[0, :])) / image_height |
|
max_x = tf.to_float(tf.reduce_max(new_coords[1, :])) / image_width |
|
|
|
|
|
min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x) |
|
min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x) |
|
return tf.stack([min_y, min_x, max_y, max_x]) |
|
|
|
|
|
def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal): |
|
"""Applies Shear Transformation to the image and shifts the bboxes. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox |
|
has 4 elements (min_y, min_x, max_y, max_x) of type float with values |
|
between [0, 1]. |
|
level: Float. How much to shear the image. This value will be between |
|
-0.3 to 0.3. |
|
replace: A one or three value 1D tensor to fill empty pixels. |
|
shear_horizontal: Boolean. If true then shear in X dimension else shear in |
|
the Y dimension. |
|
|
|
Returns: |
|
A tuple containing a 3D uint8 Tensor that will be the result of shearing |
|
image by level. The second element of the tuple is bboxes, where now |
|
the coordinates will be shifted to reflect the sheared image. |
|
""" |
|
if shear_horizontal: |
|
image = shear_x(image, level, replace) |
|
else: |
|
image = shear_y(image, level, replace) |
|
|
|
|
|
image_height = tf.shape(image)[0] |
|
image_width = tf.shape(image)[1] |
|
|
|
wrapped_shear_bbox = lambda bbox: _shear_bbox( |
|
bbox, image_height, image_width, level, shear_horizontal) |
|
|
|
bboxes = tf.map_fn(wrapped_shear_bbox, bboxes) |
|
return image, bboxes |
|
|
|
|
|
def autocontrast(image): |
|
"""Implements Autocontrast function from PIL using TF ops. |
|
|
|
Args: |
|
image: A 3D uint8 tensor. |
|
|
|
Returns: |
|
The image after it has had autocontrast applied to it and will be of type |
|
uint8. |
|
""" |
|
|
|
def scale_channel(image): |
|
"""Scale the 2D image using the autocontrast rule.""" |
|
|
|
|
|
|
|
lo = tf.to_float(tf.reduce_min(image)) |
|
hi = tf.to_float(tf.reduce_max(image)) |
|
|
|
|
|
def scale_values(im): |
|
scale = 255.0 / (hi - lo) |
|
offset = -lo * scale |
|
im = tf.to_float(im) * scale + offset |
|
im = tf.clip_by_value(im, 0.0, 255.0) |
|
return tf.cast(im, tf.uint8) |
|
|
|
result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image) |
|
return result |
|
|
|
|
|
|
|
s1 = scale_channel(image[:, :, 0]) |
|
s2 = scale_channel(image[:, :, 1]) |
|
s3 = scale_channel(image[:, :, 2]) |
|
image = tf.stack([s1, s2, s3], 2) |
|
return image |
|
|
|
|
|
def sharpness(image, factor): |
|
"""Implements Sharpness function from PIL using TF ops.""" |
|
orig_image = image |
|
image = tf.cast(image, tf.float32) |
|
|
|
image = tf.expand_dims(image, 0) |
|
|
|
kernel = tf.constant( |
|
[[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32, |
|
shape=[3, 3, 1, 1]) / 13. |
|
|
|
kernel = tf.tile(kernel, [1, 1, 3, 1]) |
|
strides = [1, 1, 1, 1] |
|
degenerate = tf.nn.depthwise_conv2d( |
|
image, kernel, strides, padding='VALID', rate=[1, 1]) |
|
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0) |
|
degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0]) |
|
|
|
|
|
|
|
mask = tf.ones_like(degenerate) |
|
padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]]) |
|
padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]]) |
|
result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image) |
|
|
|
|
|
return blend(result, orig_image, factor) |
|
|
|
|
|
def equalize(image): |
|
"""Implements Equalize function from PIL using TF ops.""" |
|
def scale_channel(im, c): |
|
"""Scale the data in the channel to implement equalize.""" |
|
im = tf.cast(im[:, :, c], tf.int32) |
|
|
|
histo = tf.histogram_fixed_width(im, [0, 255], nbins=256) |
|
|
|
|
|
nonzero = tf.where(tf.not_equal(histo, 0)) |
|
nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1]) |
|
step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255 |
|
|
|
def build_lut(histo, step): |
|
|
|
|
|
lut = (tf.cumsum(histo) + (step // 2)) // step |
|
|
|
lut = tf.concat([[0], lut[:-1]], 0) |
|
|
|
|
|
return tf.clip_by_value(lut, 0, 255) |
|
|
|
|
|
|
|
result = tf.cond(tf.equal(step, 0), |
|
lambda: im, |
|
lambda: tf.gather(build_lut(histo, step), im)) |
|
|
|
return tf.cast(result, tf.uint8) |
|
|
|
|
|
|
|
s1 = scale_channel(image, 0) |
|
s2 = scale_channel(image, 1) |
|
s3 = scale_channel(image, 2) |
|
image = tf.stack([s1, s2, s3], 2) |
|
return image |
|
|
|
|
|
def wrap(image): |
|
"""Returns 'image' with an extra channel set to all 1s.""" |
|
shape = tf.shape(image) |
|
extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype) |
|
extended = tf.concat([image, extended_channel], 2) |
|
return extended |
|
|
|
|
|
def unwrap(image, replace): |
|
"""Unwraps an image produced by wrap. |
|
|
|
Where there is a 0 in the last channel for every spatial position, |
|
the rest of the three channels in that spatial dimension are grayed |
|
(set to 128). Operations like translate and shear on a wrapped |
|
Tensor will leave 0s in empty locations. Some transformations look |
|
at the intensity of values to do preprocessing, and we want these |
|
empty pixels to assume the 'average' value, rather than pure black. |
|
|
|
|
|
Args: |
|
image: A 3D Image Tensor with 4 channels. |
|
replace: A one or three value 1D tensor to fill empty pixels. |
|
|
|
Returns: |
|
image: A 3D image Tensor with 3 channels. |
|
""" |
|
image_shape = tf.shape(image) |
|
|
|
flattened_image = tf.reshape(image, [-1, image_shape[2]]) |
|
|
|
|
|
alpha_channel = flattened_image[:, 3] |
|
|
|
replace = tf.concat([replace, tf.ones([1], image.dtype)], 0) |
|
|
|
|
|
flattened_image = tf.where( |
|
tf.equal(alpha_channel, 0), |
|
tf.ones_like(flattened_image, dtype=image.dtype) * replace, |
|
flattened_image) |
|
|
|
image = tf.reshape(flattened_image, image_shape) |
|
image = tf.slice(image, [0, 0, 0], [image_shape[0], image_shape[1], 3]) |
|
return image |
|
|
|
|
|
def _cutout_inside_bbox(image, bbox, pad_fraction): |
|
"""Generates cutout mask and the mean pixel value of the bbox. |
|
|
|
First a location is randomly chosen within the image as the center where the |
|
cutout mask will be applied. Note this can be towards the boundaries of the |
|
image, so the full cutout mask may not be applied. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x) |
|
of type float that represents the normalized coordinates between 0 and 1. |
|
pad_fraction: Float that specifies how large the cutout mask should be in |
|
in reference to the size of the original bbox. If pad_fraction is 0.25, |
|
then the cutout mask will be of shape |
|
(0.25 * bbox height, 0.25 * bbox width). |
|
|
|
Returns: |
|
A tuple. Fist element is a tensor of the same shape as image where each |
|
element is either a 1 or 0 that is used to determine where the image |
|
will have cutout applied. The second element is the mean of the pixels |
|
in the image where the bbox is located. |
|
""" |
|
image_height = tf.shape(image)[0] |
|
image_width = tf.shape(image)[1] |
|
|
|
bbox = tf.squeeze(bbox) |
|
|
|
min_y = tf.to_int32(tf.to_float(image_height) * bbox[0]) |
|
min_x = tf.to_int32(tf.to_float(image_width) * bbox[1]) |
|
max_y = tf.to_int32(tf.to_float(image_height) * bbox[2]) |
|
max_x = tf.to_int32(tf.to_float(image_width) * bbox[3]) |
|
|
|
|
|
|
|
mean = tf.reduce_mean(image[min_y:max_y + 1, min_x:max_x + 1], |
|
reduction_indices=[0, 1]) |
|
|
|
|
|
|
|
box_height = max_y - min_y + 1 |
|
box_width = max_x - min_x + 1 |
|
pad_size_height = tf.to_int32(pad_fraction * (box_height / 2)) |
|
pad_size_width = tf.to_int32(pad_fraction * (box_width / 2)) |
|
|
|
|
|
cutout_center_height = tf.random_uniform( |
|
shape=[], minval=min_y, maxval=max_y+1, |
|
dtype=tf.int32) |
|
|
|
cutout_center_width = tf.random_uniform( |
|
shape=[], minval=min_x, maxval=max_x+1, |
|
dtype=tf.int32) |
|
|
|
lower_pad = tf.maximum( |
|
0, cutout_center_height - pad_size_height) |
|
upper_pad = tf.maximum( |
|
0, image_height - cutout_center_height - pad_size_height) |
|
left_pad = tf.maximum( |
|
0, cutout_center_width - pad_size_width) |
|
right_pad = tf.maximum( |
|
0, image_width - cutout_center_width - pad_size_width) |
|
|
|
cutout_shape = [image_height - (lower_pad + upper_pad), |
|
image_width - (left_pad + right_pad)] |
|
padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]] |
|
|
|
mask = tf.pad( |
|
tf.zeros(cutout_shape, dtype=image.dtype), |
|
padding_dims, constant_values=1) |
|
|
|
mask = tf.expand_dims(mask, 2) |
|
mask = tf.tile(mask, [1, 1, 3]) |
|
|
|
return mask, mean |
|
|
|
|
|
def bbox_cutout(image, bboxes, pad_fraction, replace_with_mean): |
|
"""Applies cutout to the image according to bbox information. |
|
|
|
This is a cutout variant that using bbox information to make more informed |
|
decisions on where to place the cutout mask. |
|
|
|
Args: |
|
image: 3D uint8 Tensor. |
|
bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox |
|
has 4 elements (min_y, min_x, max_y, max_x) of type float with values |
|
between [0, 1]. |
|
pad_fraction: Float that specifies how large the cutout mask should be in |
|
in reference to the size of the original bbox. If pad_fraction is 0.25, |
|
then the cutout mask will be of shape |
|
(0.25 * bbox height, 0.25 * bbox width). |
|
replace_with_mean: Boolean that specified what value should be filled in |
|
where the cutout mask is applied. Since the incoming image will be of |
|
uint8 and will not have had any mean normalization applied, by default |
|
we set the value to be 128. If replace_with_mean is True then we find |
|
the mean pixel values across the channel dimension and use those to fill |
|
in where the cutout mask is applied. |
|
|
|
Returns: |
|
A tuple. First element is a tensor of the same shape as image that has |
|
cutout applied to it. Second element is the bboxes that were passed in |
|
that will be unchanged. |
|
""" |
|
def apply_bbox_cutout(image, bboxes, pad_fraction): |
|
"""Applies cutout to a single bounding box within image.""" |
|
|
|
random_index = tf.random_uniform( |
|
shape=[], maxval=tf.shape(bboxes)[0], dtype=tf.int32) |
|
|
|
chosen_bbox = tf.gather(bboxes, random_index) |
|
mask, mean = _cutout_inside_bbox(image, chosen_bbox, pad_fraction) |
|
|
|
|
|
|
|
replace = mean if replace_with_mean else 128 |
|
|
|
|
|
|
|
image = tf.where( |
|
tf.equal(mask, 0), |
|
tf.cast(tf.ones_like(image, dtype=image.dtype) * replace, |
|
dtype=image.dtype), |
|
image) |
|
return image |
|
|
|
|
|
image = tf.cond(tf.equal(tf.size(bboxes), 0), lambda: image, |
|
lambda: apply_bbox_cutout(image, bboxes, pad_fraction)) |
|
|
|
return image, bboxes |
|
|
|
|
|
NAME_TO_FUNC = { |
|
'AutoContrast': autocontrast, |
|
'Equalize': equalize, |
|
'Posterize': posterize, |
|
'Solarize': solarize, |
|
'SolarizeAdd': solarize_add, |
|
'Color': color, |
|
'Contrast': contrast, |
|
'Brightness': brightness, |
|
'Sharpness': sharpness, |
|
'Cutout': cutout, |
|
'BBox_Cutout': bbox_cutout, |
|
'Rotate_BBox': rotate_with_bboxes, |
|
|
|
'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox( |
|
image, bboxes, pixels, replace, shift_horizontal=True), |
|
'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox( |
|
image, bboxes, pixels, replace, shift_horizontal=False), |
|
'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes( |
|
image, bboxes, level, replace, shear_horizontal=True), |
|
'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes( |
|
image, bboxes, level, replace, shear_horizontal=False), |
|
|
|
'Rotate_Only_BBoxes': rotate_only_bboxes, |
|
'ShearX_Only_BBoxes': shear_x_only_bboxes, |
|
'ShearY_Only_BBoxes': shear_y_only_bboxes, |
|
'TranslateX_Only_BBoxes': translate_x_only_bboxes, |
|
'TranslateY_Only_BBoxes': translate_y_only_bboxes, |
|
'Flip_Only_BBoxes': flip_only_bboxes, |
|
'Solarize_Only_BBoxes': solarize_only_bboxes, |
|
'Equalize_Only_BBoxes': equalize_only_bboxes, |
|
'Cutout_Only_BBoxes': cutout_only_bboxes, |
|
} |
|
|
|
|
|
def _randomly_negate_tensor(tensor): |
|
"""With 50% prob turn the tensor negative.""" |
|
should_flip = tf.cast(tf.floor(tf.random_uniform([]) + 0.5), tf.bool) |
|
final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor) |
|
return final_tensor |
|
|
|
|
|
def _rotate_level_to_arg(level): |
|
level = (level/_MAX_LEVEL) * 30. |
|
level = _randomly_negate_tensor(level) |
|
return (level,) |
|
|
|
|
|
def _shrink_level_to_arg(level): |
|
"""Converts level to ratio by which we shrink the image content.""" |
|
if level == 0: |
|
return (1.0,) |
|
|
|
level = 2. / (_MAX_LEVEL / level) + 0.9 |
|
return (level,) |
|
|
|
|
|
def _enhance_level_to_arg(level): |
|
return ((level/_MAX_LEVEL) * 1.8 + 0.1,) |
|
|
|
|
|
def _shear_level_to_arg(level): |
|
level = (level/_MAX_LEVEL) * 0.3 |
|
|
|
level = _randomly_negate_tensor(level) |
|
return (level,) |
|
|
|
|
|
def _translate_level_to_arg(level, translate_const): |
|
level = (level/_MAX_LEVEL) * float(translate_const) |
|
|
|
level = _randomly_negate_tensor(level) |
|
return (level,) |
|
|
|
|
|
def _bbox_cutout_level_to_arg(level, hparams): |
|
cutout_pad_fraction = (level/_MAX_LEVEL) * hparams.cutout_max_pad_fraction |
|
return (cutout_pad_fraction, |
|
hparams.cutout_bbox_replace_with_mean) |
|
|
|
|
|
def level_to_arg(hparams): |
|
return { |
|
'AutoContrast': lambda level: (), |
|
'Equalize': lambda level: (), |
|
'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),), |
|
'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),), |
|
'SolarizeAdd': lambda level: (int((level/_MAX_LEVEL) * 110),), |
|
'Color': _enhance_level_to_arg, |
|
'Contrast': _enhance_level_to_arg, |
|
'Brightness': _enhance_level_to_arg, |
|
'Sharpness': _enhance_level_to_arg, |
|
'Cutout': lambda level: (int((level/_MAX_LEVEL) * hparams.cutout_const),), |
|
|
|
'BBox_Cutout': lambda level: _bbox_cutout_level_to_arg( |
|
level, hparams), |
|
'TranslateX_BBox': lambda level: _translate_level_to_arg( |
|
level, hparams.translate_const), |
|
'TranslateY_BBox': lambda level: _translate_level_to_arg( |
|
level, hparams.translate_const), |
|
|
|
'ShearX_BBox': _shear_level_to_arg, |
|
'ShearY_BBox': _shear_level_to_arg, |
|
'Rotate_BBox': _rotate_level_to_arg, |
|
'Rotate_Only_BBoxes': _rotate_level_to_arg, |
|
'ShearX_Only_BBoxes': _shear_level_to_arg, |
|
'ShearY_Only_BBoxes': _shear_level_to_arg, |
|
|
|
'TranslateX_Only_BBoxes': lambda level: _translate_level_to_arg( |
|
level, hparams.translate_bbox_const), |
|
'TranslateY_Only_BBoxes': lambda level: _translate_level_to_arg( |
|
level, hparams.translate_bbox_const), |
|
|
|
'Flip_Only_BBoxes': lambda level: (), |
|
'Solarize_Only_BBoxes': lambda level: (int((level/_MAX_LEVEL) * 256),), |
|
'Equalize_Only_BBoxes': lambda level: (), |
|
|
|
'Cutout_Only_BBoxes': lambda level: ( |
|
int((level/_MAX_LEVEL) * hparams.cutout_bbox_const),), |
|
|
|
} |
|
|
|
|
|
def bbox_wrapper(func): |
|
"""Adds a bboxes function argument to func and returns unchanged bboxes.""" |
|
def wrapper(images, bboxes, *args, **kwargs): |
|
return (func(images, *args, **kwargs), bboxes) |
|
return wrapper |
|
|
|
|
|
def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams): |
|
"""Return the function that corresponds to `name` and update `level` param.""" |
|
func = NAME_TO_FUNC[name] |
|
args = level_to_arg(augmentation_hparams)[name](level) |
|
|
|
if six.PY2: |
|
|
|
arg_spec = inspect.getargspec(func) |
|
|
|
else: |
|
arg_spec = inspect.getfullargspec(func) |
|
|
|
|
|
|
|
|
|
if 'prob' in arg_spec[0]: |
|
args = tuple([prob] + list(args)) |
|
|
|
|
|
|
|
if 'replace' in arg_spec[0]: |
|
|
|
assert 'replace' == arg_spec[0][-1] |
|
args = tuple(list(args) + [replace_value]) |
|
|
|
|
|
|
|
if 'bboxes' not in arg_spec[0]: |
|
func = bbox_wrapper(func) |
|
return (func, prob, args) |
|
|
|
|
|
def _apply_func_with_prob(func, image, args, prob, bboxes): |
|
"""Apply `func` to image w/ `args` as input with probability `prob`.""" |
|
assert isinstance(args, tuple) |
|
if six.PY2: |
|
|
|
arg_spec = inspect.getargspec(func) |
|
|
|
else: |
|
arg_spec = inspect.getfullargspec(func) |
|
assert 'bboxes' == arg_spec[0][1] |
|
|
|
|
|
|
|
if 'prob' in arg_spec[0]: |
|
prob = 1.0 |
|
|
|
|
|
should_apply_op = tf.cast( |
|
tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool) |
|
augmented_image, augmented_bboxes = tf.cond( |
|
should_apply_op, |
|
lambda: func(image, bboxes, *args), |
|
lambda: (image, bboxes)) |
|
return augmented_image, augmented_bboxes |
|
|
|
|
|
def select_and_apply_random_policy(policies, image, bboxes): |
|
"""Select a random policy from `policies` and apply it to `image`.""" |
|
policy_to_select = tf.random_uniform([], maxval=len(policies), dtype=tf.int32) |
|
|
|
|
|
for (i, policy) in enumerate(policies): |
|
image, bboxes = tf.cond( |
|
tf.equal(i, policy_to_select), |
|
lambda selected_policy=policy: selected_policy(image, bboxes), |
|
lambda: (image, bboxes)) |
|
return (image, bboxes) |
|
|
|
|
|
def build_and_apply_nas_policy(policies, image, bboxes, |
|
augmentation_hparams): |
|
"""Build a policy from the given policies passed in and apply to image. |
|
|
|
Args: |
|
policies: list of lists of tuples in the form `(func, prob, level)`, `func` |
|
is a string name of the augmentation function, `prob` is the probability |
|
of applying the `func` operation, `level` is the input argument for |
|
`func`. |
|
image: tf.Tensor that the resulting policy will be applied to. |
|
bboxes: |
|
augmentation_hparams: Hparams associated with the NAS learned policy. |
|
|
|
Returns: |
|
A version of image that now has data augmentation applied to it based on |
|
the `policies` pass into the function. Additionally, returns bboxes if |
|
a value for them is passed in that is not None |
|
""" |
|
replace_value = [128, 128, 128] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tf_policies = [] |
|
for policy in policies: |
|
tf_policy = [] |
|
|
|
|
|
for policy_info in policy: |
|
policy_info = list(policy_info) + [replace_value, augmentation_hparams] |
|
|
|
tf_policy.append(_parse_policy_info(*policy_info)) |
|
|
|
|
|
def make_final_policy(tf_policy_): |
|
def final_policy(image_, bboxes_): |
|
for func, prob, args in tf_policy_: |
|
image_, bboxes_ = _apply_func_with_prob( |
|
func, image_, args, prob, bboxes_) |
|
return image_, bboxes_ |
|
return final_policy |
|
tf_policies.append(make_final_policy(tf_policy)) |
|
|
|
augmented_image, augmented_bbox = select_and_apply_random_policy( |
|
tf_policies, image, bboxes) |
|
|
|
return (augmented_image, augmented_bbox) |
|
|
|
|
|
|
|
def distort_image_with_autoaugment(image, bboxes, augmentation_name): |
|
"""Applies the AutoAugment policy to `image` and `bboxes`. |
|
|
|
Args: |
|
image: `Tensor` of shape [height, width, 3] representing an image. |
|
bboxes: `Tensor` of shape [N, 4] representing ground truth boxes that are |
|
normalized between [0, 1]. |
|
augmentation_name: The name of the AutoAugment policy to use. The available |
|
options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for |
|
all of the results in the paper and was found to achieve the best results |
|
on the COCO dataset. `v1`, `v2` and `v3` are additional good policies |
|
found on the COCO dataset that have slight variation in what operations |
|
were used during the search procedure along with how many operations are |
|
applied in parallel to a single image (2 vs 3). |
|
|
|
Returns: |
|
A tuple containing the augmented versions of `image` and `bboxes`. |
|
""" |
|
image = tf.cast(image, tf.uint8) |
|
available_policies = {'v0': policy_v0, 'v1': policy_v1, 'v2': policy_v2, |
|
'v3': policy_v3, 'test': policy_vtest} |
|
if augmentation_name not in available_policies: |
|
raise ValueError('Invalid augmentation_name: {}'.format(augmentation_name)) |
|
|
|
policy = available_policies[augmentation_name]() |
|
|
|
augmentation_hparams = contrib_training.HParams( |
|
cutout_max_pad_fraction=0.75, |
|
cutout_bbox_replace_with_mean=False, |
|
cutout_const=100, |
|
translate_const=250, |
|
cutout_bbox_const=50, |
|
translate_bbox_const=120) |
|
|
|
augmented_image, augmented_bbox = ( |
|
build_and_apply_nas_policy(policy, image, bboxes, augmentation_hparams)) |
|
augmented_image = tf.cast(augmented_image, tf.float32) |
|
return augmented_image, augmented_bbox |
|
|