|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Image/Mask decoder used while pretraining the network.""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
slim = tf.contrib.slim |
|
|
|
_FEATURE_MAP_SIZE = 8 |
|
|
|
|
|
def _postprocess_im(images): |
|
"""Performs post-processing for the images returned from conv net. |
|
|
|
Transforms the value from [-1, 1] to [0, 1]. |
|
""" |
|
return (images + 1) * 0.5 |
|
|
|
|
|
def model(identities, poses, params, is_training): |
|
"""Decoder model to get image and mask from latent embedding.""" |
|
del is_training |
|
f_dim = params.f_dim |
|
fc_dim = params.fc_dim |
|
|
|
outputs = dict() |
|
|
|
with slim.arg_scope( |
|
[slim.fully_connected, slim.conv2d_transpose], |
|
weights_initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1)): |
|
|
|
h0 = tf.concat([identities, poses], 1) |
|
h0 = slim.fully_connected(h0, fc_dim, activation_fn=tf.nn.relu) |
|
h1 = slim.fully_connected(h0, fc_dim, activation_fn=tf.nn.relu) |
|
|
|
|
|
dec_m0 = slim.fully_connected( |
|
h1, (_FEATURE_MAP_SIZE**2) * f_dim * 2, activation_fn=tf.nn.relu) |
|
dec_m0 = tf.reshape( |
|
dec_m0, [-1, _FEATURE_MAP_SIZE, _FEATURE_MAP_SIZE, f_dim * 2]) |
|
|
|
dec_m1 = slim.conv2d_transpose( |
|
dec_m0, f_dim, [5, 5], stride=2, activation_fn=tf.nn.relu) |
|
dec_m2 = slim.conv2d_transpose( |
|
dec_m1, int(f_dim / 2), [5, 5], stride=2, activation_fn=tf.nn.relu) |
|
dec_m3 = slim.conv2d_transpose( |
|
dec_m2, 1, [5, 5], stride=2, activation_fn=tf.nn.sigmoid) |
|
|
|
|
|
dec_i0 = slim.fully_connected( |
|
h1, (_FEATURE_MAP_SIZE**2) * f_dim * 4, activation_fn=tf.nn.relu) |
|
dec_i0 = tf.reshape( |
|
dec_i0, [-1, _FEATURE_MAP_SIZE, _FEATURE_MAP_SIZE, f_dim * 4]) |
|
|
|
dec_i1 = slim.conv2d_transpose( |
|
dec_i0, f_dim * 2, [5, 5], stride=2, activation_fn=tf.nn.relu) |
|
dec_i2 = slim.conv2d_transpose( |
|
dec_i1, f_dim * 2, [5, 5], stride=2, activation_fn=tf.nn.relu) |
|
dec_i3 = slim.conv2d_transpose( |
|
dec_i2, 3, [5, 5], stride=2, activation_fn=tf.nn.tanh) |
|
|
|
outputs = dict() |
|
outputs['images'] = _postprocess_im(dec_i3) |
|
outputs['masks'] = dec_m3 |
|
return outputs |
|
|