Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +94 -141
src/streamlit_app.py
CHANGED
@@ -5,20 +5,16 @@ from PIL import Image
|
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import chromadb
|
8 |
-
from chromadb.utils import embedding_functions
|
9 |
import tempfile
|
10 |
|
11 |
-
# -----
|
|
|
|
|
|
|
|
|
12 |
if 'model' not in st.session_state:
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
|
15 |
-
|
16 |
-
try:
|
17 |
-
model, preprocess = clip.load("ViT-B/32", device=device, download_root=cache_dir)
|
18 |
-
except Exception as e:
|
19 |
-
st.error(f"Failed to load CLIP model: {e}")
|
20 |
-
st.stop()
|
21 |
-
|
22 |
st.session_state.model = model
|
23 |
st.session_state.preprocess = preprocess
|
24 |
st.session_state.device = device
|
@@ -26,21 +22,15 @@ if 'model' not in st.session_state:
|
|
26 |
st.session_state.demo_image_paths = []
|
27 |
st.session_state.user_images = []
|
28 |
|
29 |
-
# ----- Initialize ChromaDB
|
30 |
if 'chroma_client' not in st.session_state:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
st.session_state.user_collection = st.session_state.chroma_client.get_or_create_collection(
|
39 |
-
name="user_images", metadata={"hnsw:space": "cosine"}
|
40 |
-
)
|
41 |
-
except Exception as e:
|
42 |
-
st.error(f"Failed to initialize ChromaDB: {e}")
|
43 |
-
st.stop()
|
44 |
|
45 |
# ----- Load Demo Images -----
|
46 |
if not st.session_state.get("demo_images_loaded", False):
|
@@ -48,130 +38,93 @@ if not st.session_state.get("demo_images_loaded", False):
|
|
48 |
if os.path.exists(demo_folder):
|
49 |
demo_image_paths = [os.path.join(demo_folder, f) for f in os.listdir(demo_folder)
|
50 |
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
st.session_state.demo_image_paths = demo_image_paths
|
54 |
-
st.session_state.demo_images = [Image.open(path).convert("RGB") for path in demo_image_paths]
|
55 |
-
|
56 |
-
# Clear previous collection
|
57 |
-
try:
|
58 |
-
st.session_state.demo_collection.delete(ids=[str(i) for i in range(len(demo_image_paths))])
|
59 |
-
except:
|
60 |
-
pass # Collection might be empty
|
61 |
-
|
62 |
-
embeddings, ids, metadatas = [], [], []
|
63 |
-
for i, img in enumerate(st.session_state.demo_images):
|
64 |
-
img_pre = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
65 |
-
with torch.no_grad():
|
66 |
-
embedding = st.session_state.model.encode_image(img_pre).cpu().numpy().flatten()
|
67 |
-
embeddings.append(embedding)
|
68 |
-
ids.append(str(i))
|
69 |
-
metadatas.append({"path": demo_image_paths[i]})
|
70 |
-
|
71 |
-
try:
|
72 |
-
st.session_state.demo_collection.add(
|
73 |
-
embeddings=embeddings,
|
74 |
-
ids=ids,
|
75 |
-
metadatas=metadatas
|
76 |
-
)
|
77 |
-
st.session_state.demo_images_loaded = True
|
78 |
-
except Exception as e:
|
79 |
-
st.error(f"Failed to add demo images to ChromaDB: {e}")
|
80 |
-
else:
|
81 |
-
st.warning("No images found in 'demo_images' folder.")
|
82 |
-
else:
|
83 |
-
st.warning("Folder 'demo_images' does not exist.")
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
st.subheader("Upload Your Images")
|
92 |
-
uploaded_files = st.file_uploader("Choose images", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
st.session_state.user_images = []
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
st.session_state.user_collection.delete(ids=[
|
100 |
-
str(i) for i in range(st.session_state.user_collection.count())
|
101 |
-
])
|
102 |
-
except:
|
103 |
-
pass
|
104 |
-
|
105 |
-
for i, uploaded_file in enumerate(uploaded_files):
|
106 |
-
img = Image.open(uploaded_file).convert("RGB")
|
107 |
st.session_state.user_images.append(img)
|
108 |
|
109 |
-
|
110 |
with torch.no_grad():
|
111 |
-
embedding = st.session_state.model.encode_image(
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
metadatas=[{"index": i}]
|
118 |
-
)
|
119 |
-
except Exception as e:
|
120 |
-
st.error(f"Failed to add image {i}: {e}")
|
121 |
-
|
122 |
-
if st.session_state.user_collection.count() > 0:
|
123 |
-
st.success(f"Uploaded {len(st.session_state.user_images)} images.")
|
124 |
-
else:
|
125 |
-
st.warning("Upload failed.")
|
126 |
-
|
127 |
-
# ----- Query Image -----
|
128 |
-
st.subheader("Upload Query Image")
|
129 |
-
query_file = st.file_uploader("Choose a query image", type=['png', 'jpg', 'jpeg'])
|
130 |
-
|
131 |
-
if query_file is not None:
|
132 |
-
query_img = Image.open(query_file).convert("RGB")
|
133 |
-
st.image(query_img, caption="Query Image", width=200)
|
134 |
-
|
135 |
-
query_pre = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
|
136 |
-
with torch.no_grad():
|
137 |
-
query_embedding = st.session_state.model.encode_image(query_pre).cpu().numpy().flatten()
|
138 |
-
|
139 |
-
# ----- Search in Demo -----
|
140 |
-
if mode == "Search in Demo Images":
|
141 |
-
if st.session_state.demo_collection.count() > 0:
|
142 |
-
results = st.session_state.demo_collection.query(
|
143 |
-
query_embeddings=[query_embedding],
|
144 |
-
n_results=min(5, st.session_state.demo_collection.count())
|
145 |
-
)
|
146 |
-
distances = results['distances'][0]
|
147 |
-
ids = results['ids'][0]
|
148 |
-
similarities = [1 - dist for dist in distances]
|
149 |
-
|
150 |
-
st.subheader("Top 5 Similar Demo Images")
|
151 |
-
cols = st.columns(5)
|
152 |
-
for i, (idx, sim) in enumerate(zip(ids, similarities)):
|
153 |
-
img_idx = int(idx)
|
154 |
-
with cols[i]:
|
155 |
-
st.image(st.session_state.demo_images[img_idx], caption=f"Sim: {sim:.4f}", width=150)
|
156 |
-
else:
|
157 |
-
st.error("No demo images available.")
|
158 |
-
|
159 |
-
# ----- Search in User Uploads -----
|
160 |
-
elif mode == "Search in My Images":
|
161 |
-
if st.session_state.user_collection.count() > 0:
|
162 |
-
results = st.session_state.user_collection.query(
|
163 |
-
query_embeddings=[query_embedding],
|
164 |
-
n_results=min(5, st.session_state.user_collection.count())
|
165 |
)
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import chromadb
|
|
|
8 |
import tempfile
|
9 |
|
10 |
+
# ----- Setup -----
|
11 |
+
CACHE_DIR = tempfile.gettempdir()
|
12 |
+
CHROMA_PATH = os.path.join(CACHE_DIR, "chroma_db")
|
13 |
+
|
14 |
+
# ----- Load CLIP Model -----
|
15 |
if 'model' not in st.session_state:
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
model, preprocess = clip.load("ViT-B/32", device=device, download_root=CACHE_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
st.session_state.model = model
|
19 |
st.session_state.preprocess = preprocess
|
20 |
st.session_state.device = device
|
|
|
22 |
st.session_state.demo_image_paths = []
|
23 |
st.session_state.user_images = []
|
24 |
|
25 |
+
# ----- Initialize ChromaDB -----
|
26 |
if 'chroma_client' not in st.session_state:
|
27 |
+
st.session_state.chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
|
28 |
+
st.session_state.demo_collection = st.session_state.chroma_client.get_or_create_collection(
|
29 |
+
name="demo_images", metadata={"hnsw:space": "cosine"}
|
30 |
+
)
|
31 |
+
st.session_state.user_collection = st.session_state.chroma_client.get_or_create_collection(
|
32 |
+
name="user_images", metadata={"hnsw:space": "cosine"}
|
33 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# ----- Load Demo Images -----
|
36 |
if not st.session_state.get("demo_images_loaded", False):
|
|
|
38 |
if os.path.exists(demo_folder):
|
39 |
demo_image_paths = [os.path.join(demo_folder, f) for f in os.listdir(demo_folder)
|
40 |
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
41 |
+
st.session_state.demo_images = [Image.open(p).convert("RGB") for p in demo_image_paths]
|
42 |
+
st.session_state.demo_image_paths = demo_image_paths
|
43 |
|
44 |
+
st.session_state.demo_collection.delete(ids=[str(i) for i in range(len(demo_image_paths))])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
embeddings, ids, metadatas = [], [], []
|
47 |
+
for i, img in enumerate(st.session_state.demo_images):
|
48 |
+
img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
49 |
+
with torch.no_grad():
|
50 |
+
embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
|
51 |
+
embeddings.append(embedding)
|
52 |
+
ids.append(str(i))
|
53 |
+
metadatas.append({"path": demo_image_paths[i]})
|
54 |
|
55 |
+
st.session_state.demo_collection.add(embeddings=embeddings, ids=ids, metadatas=metadatas)
|
56 |
+
st.session_state.demo_images_loaded = True
|
|
|
|
|
57 |
|
58 |
+
# ----- UI -----
|
59 |
+
st.title("🔎 CLIP Image Search (Text & Image)")
|
60 |
+
mode = st.radio("Choose dataset to search in:", ("Demo Images", "My Uploaded Images"))
|
61 |
+
query_type = st.radio("Query type:", ("Image", "Text"))
|
62 |
+
|
63 |
+
# ----- Upload User Images -----
|
64 |
+
if mode == "My Uploaded Images":
|
65 |
+
uploaded = st.file_uploader("Upload your images", type=['jpg', 'jpeg', 'png'], accept_multiple_files=True)
|
66 |
+
if uploaded:
|
67 |
st.session_state.user_images = []
|
68 |
+
st.session_state.user_collection.delete(ids=[
|
69 |
+
str(i) for i in range(st.session_state.user_collection.count())
|
70 |
+
])
|
71 |
|
72 |
+
for i, file in enumerate(uploaded):
|
73 |
+
img = Image.open(file).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
st.session_state.user_images.append(img)
|
75 |
|
76 |
+
img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
77 |
with torch.no_grad():
|
78 |
+
embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
|
79 |
+
|
80 |
+
st.session_state.user_collection.add(
|
81 |
+
embeddings=[embedding],
|
82 |
+
ids=[str(i)],
|
83 |
+
metadatas=[{"index": i}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
)
|
85 |
+
|
86 |
+
st.success(f"{len(uploaded)} images uploaded.")
|
87 |
+
|
88 |
+
# ----- Perform Query -----
|
89 |
+
query_embedding = None
|
90 |
+
if query_type == "Image":
|
91 |
+
img_file = st.file_uploader("Upload query image", type=["jpg", "jpeg", "png"])
|
92 |
+
if img_file:
|
93 |
+
img = Image.open(img_file).convert("RGB")
|
94 |
+
st.image(img, caption="Query Image", width=200)
|
95 |
+
img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
96 |
+
with torch.no_grad():
|
97 |
+
query_embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
|
98 |
+
elif query_type == "Text":
|
99 |
+
text_query = st.text_input("Enter search text:")
|
100 |
+
if text_query:
|
101 |
+
tokens = clip.tokenize([text_query]).to(st.session_state.device)
|
102 |
+
with torch.no_grad():
|
103 |
+
query_embedding = st.session_state.model.encode_text(tokens).cpu().numpy().flatten()
|
104 |
+
|
105 |
+
# ----- Run Search -----
|
106 |
+
if query_embedding is not None:
|
107 |
+
if mode == "Demo Images":
|
108 |
+
collection = st.session_state.demo_collection
|
109 |
+
images = st.session_state.demo_images
|
110 |
+
else:
|
111 |
+
collection = st.session_state.user_collection
|
112 |
+
images = st.session_state.user_images
|
113 |
+
|
114 |
+
if collection.count() > 0:
|
115 |
+
results = collection.query(
|
116 |
+
query_embeddings=[query_embedding],
|
117 |
+
n_results=min(5, collection.count())
|
118 |
+
)
|
119 |
+
ids = results["ids"][0]
|
120 |
+
distances = results["distances"][0]
|
121 |
+
similarities = [1 - d for d in distances]
|
122 |
+
|
123 |
+
st.subheader("Top Matches")
|
124 |
+
cols = st.columns(5)
|
125 |
+
for i, (img_id, sim) in enumerate(zip(ids, similarities)):
|
126 |
+
with cols[i]:
|
127 |
+
idx = int(img_id)
|
128 |
+
st.image(images[idx], caption=f"Sim: {sim:.3f}", width=150)
|
129 |
+
else:
|
130 |
+
st.warning("No images found in collection.")
|