Multimodal_v2 / user.py
NEXAS's picture
Update user.py
0ce361f verified
raw
history blame
5.58 kB
from utils.qa import chain
import streamlit as st
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
path = "mm_vdb2"
client = chromadb.PersistentClient(path=path)
image_collection = client.get_collection(name="image")
video_collection = client.get_collection(name='video_collection')
memory_storage = StreamlitChatMessageHistory(key="chat_messages")
memory = ConversationBufferWindowMemory(memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=3)
def get_answer(query):
response = chain.invoke(query)
#return response["result"]
return response
def home():
st.header("Welcome")
#st.set_page_config(layout='wide', page_title="Virtual Tutor")
st.markdown("""
<svg width="600" height="100">
<text x="50%" y="50%" font-family="San serif" font-size="42px" fill="Black" text-anchor="middle" stroke="white"
stroke-width="0.3" stroke-linejoin="round">Virtual Tutor - CHAT
</text>
</svg>
""", unsafe_allow_html=True)
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hi! How may I assist you today?"}
]
st.markdown("""
<style>
.stChatInputContainer > div {
background-color: #000000;
}
</style>
""", unsafe_allow_html=True)
for message in st.session_state.messages: # Display the prior chat messages
with st.chat_message(message["role"]):
st.write(message["content"])
for i, msg in enumerate(memory_storage.messages):
name = "user" if i % 2 == 0 else "assistant"
st.chat_message(name).markdown(msg.content)
if user_input := st.chat_input("User Input"):
with st.chat_message("user"):
st.markdown(user_input)
with st.spinner("Generating Response..."):
with st.chat_message("assistant"):
response = get_answer(user_input)
answer = response['result']
st.markdown(answer)
message = {"role": "assistant", "content": answer}
message_u = {"role": "user", "content": user_input}
st.session_state.messages.append(message_u)
st.session_state.messages.append(message)
display_images(user_input)
display_videos_streamlit(user_input)
def display_images(image_collection, query_text, max_distance=None, debug=False):
"""
Display images in a Streamlit app based on a query.
Args:
image_collection: The image collection object for querying.
query_text (str): The text query for images.
max_distance (float, optional): Maximum allowable distance for filtering.
debug (bool, optional): Whether to print debug information.
"""
results = image_collection.query(
query_texts=[query_text],
n_results=10,
include=['uris', 'distances']
)
uris = results['uris'][0]
distances = results['distances'][0]
# Combine uris and distances, then sort by URI in ascending order
sorted_results = sorted(zip(uris, distances), key=lambda x: x[0])
# Display images side by side, 3 images per row
cols = st.columns(3) # Create 3 columns for the layout
for i, (uri, distance) in enumerate(sorted_results):
if max_distance is None or distance <= max_distance:
try:
img = PILImage.open(uri)
with cols[i % 3]: # Use modulo to cycle through columns
st.image(img, use_container_width = True)
except Exception as e:
st.error(f"Error loading image: {e}")
def display_videos_streamlit(video_collection, query_text, max_distance=None, max_results=5, debug=False):
"""
Display videos in a Streamlit app based on a query.
Args:
video_collection: The video collection object for querying.
query_text (str): The text query for videos.
max_distance (float, optional): Maximum allowable distance for filtering.
max_results (int, optional): Maximum number of results to display.
debug (bool, optional): Whether to print debug information.
"""
# Deduplication set
displayed_videos = set()
# Query the video collection with the specified text
results = video_collection.query(
query_texts=[query_text],
n_results=max_results, # Adjust the number of results if needed
include=['uris', 'distances', 'metadatas']
)
# Extract URIs, distances, and metadatas from the result
uris = results['uris'][0]
distances = results['distances'][0]
metadatas = results['metadatas'][0]
# Display the videos that meet the distance criteria
for uri, distance, metadata in zip(uris, distances, metadatas):
video_uri = metadata['video_uri']
# Check if a max_distance filter is applied and the distance is within the allowed range
if (max_distance is None or distance <= max_distance) and video_uri not in displayed_videos:
if debug:
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance}")
st.video(video_uri) # Display video in Streamlit
displayed_videos.add(video_uri) # Add to the set to prevent duplication
else:
if debug:
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance} (Filtered out)")