File size: 4,055 Bytes
b1b6964
 
212478c
 
 
b1b6964
 
4afa186
b1b6964
212478c
8a06a9e
bd6665e
66ad911
 
 
 
 
 
 
 
212478c
 
b1b6964
 
 
 
6e1201a
 
 
3f6512f
3571b6c
 
b1b6964
212478c
 
 
 
 
 
3f6512f
212478c
3571b6c
212478c
3571b6c
b1b6964
 
212478c
b1b6964
212478c
3571b6c
6e1201a
212478c
3f6512f
 
66ad911
212478c
3f6512f
 
66ad911
212478c
 
66ad911
 
3571b6c
 
 
 
 
 
 
 
 
b1b6964
212478c
 
b1b6964
212478c
 
a8e2b6e
3571b6c
 
 
 
 
 
 
 
 
 
b1b6964
212478c
 
 
 
 
 
 
 
 
3571b6c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import streamlit as st
import os
import base64
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from utils.ingestion import DocumentProcessor
from utils.llm import LLMProcessor
from utils.qa import QAEngine

# Configure Streamlit page
st.set_page_config(page_title="AI-Powered Document QA", layout="wide")

# Function to encode image in Base64 for avatars
def encode_image(image_path):
    with open(image_path, "rb") as file:
        return base64.b64encode(file.read()).decode()

# Load avatar images
user_avatar = encode_image("./icons/user.jpg")  # Change path if needed
ai_avatar = encode_image("./icons/ai.jpg")

# Initialize document processing & AI components
document_processor = DocumentProcessor()
llm_processor = LLMProcessor()
qa_engine = QAEngine()

# Ensure temp directory exists
os.makedirs("temp", exist_ok=True)

# Sidebar for file upload
st.sidebar.header("Upload a Document")
uploaded_file = st.sidebar.file_uploader("Choose a file", type=["pdf", "docx", "html", "pptx", "txt"])

# Initialize chat memory
memory_storage = StreamlitChatMessageHistory(key="chat_messages")
memory = ConversationBufferWindowMemory(
    memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=5
)

# Document upload & processing
if uploaded_file and "document_uploaded" not in st.session_state:
    file_path = os.path.join("temp", uploaded_file.name)

    with open(file_path, "wb") as f:
        f.write(uploaded_file.read())

    st.sidebar.success("File uploaded successfully!")

    with st.spinner("Processing document..."):
        document_processor.process_document(file_path)

    st.sidebar.success("Document processed successfully!")
    st.session_state["document_uploaded"] = True

# Chat UI Header
st.markdown("<h2 style='text-align: center;'>AI Chat Assistant</h2>", unsafe_allow_html=True)
st.markdown("---")

# Display chat history with avatars
for message in memory_storage.messages:
    role = "user" if message.type == "human" else "assistant"
    avatar = user_avatar if role == "user" else ai_avatar  # Assign appropriate avatar

    st.markdown(
        f"""
        <div style="display: flex; align-items: center; margin-bottom: 10px;">
            <img src="data:image/jpeg;base64,{avatar}" width="40" height="40" style="border-radius: 50%; margin-right: 10px;">
            <div style="background-color: #f1f1f1; padding: 10px; border-radius: 10px; max-width: 80%;">{message.content}</div>
        </div>
        """,
        unsafe_allow_html=True
    )

# User input at the bottom
user_input = st.chat_input("Ask me anything...")

if user_input:
    memory_storage.add_user_message(user_input)

    with st.markdown(
        f"""
        <div style="display: flex; align-items: center; margin-bottom: 10px;">
            <img src="data:image/jpeg;base64,{user_avatar}" width="40" height="40" style="border-radius: 50%; margin-right: 10px;">
            <div style="background-color: #d9f7be; padding: 10px; border-radius: 10px; max-width: 80%;">{user_input}</div>
        </div>
        """,
        unsafe_allow_html=True
    ):
        pass

    with st.spinner("Generating response..."):
        if st.session_state.get("document_uploaded", False):
            answer = qa_engine.query(user_input)
        else:
            answer = llm_processor.generate_answer("", user_input)
            st.warning("No document uploaded. This response is generated from general AI knowledge and may not be document-specific.")

    memory_storage.add_ai_message(answer)

    with st.markdown(
        f"""
        <div style="display: flex; align-items: center; margin-bottom: 10px;">
            <img src="data:image/jpeg;base64,{ai_avatar}" width="40" height="40" style="border-radius: 50%; margin-right: 10px;">
            <div style="background-color: #e6f7ff; padding: 10px; border-radius: 10px; max-width: 80%;">{answer.content}</div>
        </div>
        """,
        unsafe_allow_html=True
    ):
        pass