Spaces:
Running
Running
Update src/utils/ingest_text.py
Browse files- src/utils/ingest_text.py +17 -14
src/utils/ingest_text.py
CHANGED
@@ -23,9 +23,10 @@ llamaparse_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
|
23 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
24 |
|
25 |
# Paths
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
collection_name = "rag"
|
30 |
|
31 |
# Helper: Load or parse PDF
|
@@ -48,47 +49,49 @@ def load_or_parse_data(pdf_path):
|
|
48 |
def create_vector_database(pdf_path):
|
49 |
print("π§ Starting vector DB creation...")
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
parsed_docs = load_or_parse_data(pdf_path)
|
52 |
if not parsed_docs:
|
53 |
raise ValueError("β No parsed documents returned from LlamaParse!")
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
# Write Markdown content to file (overwrite)
|
58 |
with open(output_md, 'w', encoding='utf-8') as f:
|
59 |
for doc in parsed_docs:
|
60 |
if hasattr(doc, "text") and doc.text.strip():
|
61 |
f.write(doc.text.strip() + "\n\n")
|
62 |
|
63 |
-
# Ensure .md file was written
|
64 |
if not os.path.exists(output_md) or os.path.getsize(output_md) == 0:
|
65 |
raise RuntimeError("β Markdown file was not created or is empty!")
|
66 |
|
67 |
-
# Load documents
|
68 |
try:
|
69 |
-
loader = DirectoryLoader(
|
70 |
documents = loader.load()
|
71 |
except Exception as e:
|
72 |
-
print("β οΈ DirectoryLoader failed
|
73 |
documents = TextLoader(output_md, encoding='utf-8').load()
|
74 |
|
75 |
if not documents:
|
76 |
raise RuntimeError("β No documents loaded from markdown!")
|
77 |
|
78 |
-
#
|
79 |
splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
80 |
docs = splitter.split_documents(documents)
|
81 |
print(f"β
Loaded and split {len(docs)} chunks.")
|
82 |
|
83 |
-
#
|
84 |
embeddings = FastEmbedEmbeddings() # type: ignore
|
85 |
|
86 |
-
# Create vector
|
87 |
print("π¦ Creating Qdrant vector DB...")
|
88 |
qdrant = Qdrant.from_documents(
|
89 |
documents=docs,
|
90 |
embedding=embeddings,
|
91 |
-
path=
|
92 |
collection_name=collection_name,
|
93 |
)
|
94 |
|
|
|
23 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
24 |
|
25 |
# Paths
|
26 |
+
data_dir = "data"
|
27 |
+
parsed_data_file = os.path.join(data_dir, "parsed_data.pkl")
|
28 |
+
output_md = os.path.join(data_dir, "output.md")
|
29 |
+
qdrant_dir = os.path.join(data_dir, "local_qdrant")
|
30 |
collection_name = "rag"
|
31 |
|
32 |
# Helper: Load or parse PDF
|
|
|
49 |
def create_vector_database(pdf_path):
|
50 |
print("π§ Starting vector DB creation...")
|
51 |
|
52 |
+
# Ensure directories exist
|
53 |
+
os.makedirs(data_dir, exist_ok=True)
|
54 |
+
os.makedirs(qdrant_dir, exist_ok=True)
|
55 |
+
|
56 |
+
# Parse PDF
|
57 |
parsed_docs = load_or_parse_data(pdf_path)
|
58 |
if not parsed_docs:
|
59 |
raise ValueError("β No parsed documents returned from LlamaParse!")
|
60 |
|
61 |
+
# Write Markdown content
|
|
|
|
|
62 |
with open(output_md, 'w', encoding='utf-8') as f:
|
63 |
for doc in parsed_docs:
|
64 |
if hasattr(doc, "text") and doc.text.strip():
|
65 |
f.write(doc.text.strip() + "\n\n")
|
66 |
|
|
|
67 |
if not os.path.exists(output_md) or os.path.getsize(output_md) == 0:
|
68 |
raise RuntimeError("β Markdown file was not created or is empty!")
|
69 |
|
70 |
+
# Load .md as documents
|
71 |
try:
|
72 |
+
loader = DirectoryLoader(data_dir, glob="**/*.md", show_progress=True)
|
73 |
documents = loader.load()
|
74 |
except Exception as e:
|
75 |
+
print(f"β οΈ DirectoryLoader failed: {e}. Falling back to TextLoader...")
|
76 |
documents = TextLoader(output_md, encoding='utf-8').load()
|
77 |
|
78 |
if not documents:
|
79 |
raise RuntimeError("β No documents loaded from markdown!")
|
80 |
|
81 |
+
# Chunk documents
|
82 |
splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
83 |
docs = splitter.split_documents(documents)
|
84 |
print(f"β
Loaded and split {len(docs)} chunks.")
|
85 |
|
86 |
+
# Embeddings
|
87 |
embeddings = FastEmbedEmbeddings() # type: ignore
|
88 |
|
89 |
+
# Create Qdrant vector DB
|
90 |
print("π¦ Creating Qdrant vector DB...")
|
91 |
qdrant = Qdrant.from_documents(
|
92 |
documents=docs,
|
93 |
embedding=embeddings,
|
94 |
+
path=qdrant_dir,
|
95 |
collection_name=collection_name,
|
96 |
)
|
97 |
|