Spaces:
Running
Running
File size: 3,315 Bytes
e42ecfa a0f03b5 fd58ad7 b871eea 32e8749 412b9d9 32e8749 e42ecfa fba8174 32e8749 412b9d9 32e8749 fba8174 165f772 fba8174 6ca040b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import zipfile
import sys
import os
# Check current directory and list files
print("Current Directory:", os.getcwd())
print("Files in Directory:", os.listdir())
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import tf_keras as keras
import pandas as pd
from tensorflow.keras.models import load_model
import classifier_data_lib
import tokenization
import joblib
import gradio as gr
model = load_model('ISCO-Coder-BERT.h5', custom_objects={'KerasLayer': hub.KerasLayer})
vocab_file = model.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = model.resolved_object.do_lower_case.numpy()
tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case)
# Parameters
max_seq_length = 128
label_list = 424
dummy_label = 100
# Define a function to preprocess the new data
def get_feature_new(text, max_seq_length, tokenizer, dummy_label):
example = classifier_data_lib.InputExample(guid=None,
text_a=text.numpy().decode('utf-8'),
text_b=None,
label=dummy_label) # Use a valid dummy label
feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer)
return feature.input_ids, feature.input_mask, feature.segment_ids
def get_feature_map_new(text):
input_ids, input_mask, segment_ids = tf.py_function(
lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label),
inp=[text],
Tout=[tf.int32, tf.int32, tf.int32]
)
input_ids.set_shape([max_seq_length])
input_mask.set_shape([max_seq_length])
segment_ids.set_shape([max_seq_length])
x = {'input_word_ids': input_ids,
'input_mask': input_mask,
'input_type_ids': segment_ids}
return x
def preprocess_new_data(texts):
dataset = tf.data.Dataset.from_tensor_slices((texts,))
dataset = dataset.map(get_feature_map_new,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(32, drop_remainder=False)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def launch(input):
# Load the label encoder
label_encoder = joblib.load('label_encoder.joblib')
# Preprocess the new data
sample_example = [input]
new_data_dataset = preprocess_new_data(sample_example)
# Assuming you have a model already loaded (add model loading code if needed)
# Make predictions on the new data
predictions = model.predict(new_data_dataset)
# Decode the predictions
predicted_classes = [label_list[np.argmax(pred)] for pred in predictions]
# Print the predicted classes
print(predicted_classes)
# Calculate the highest probabilities
highest_probabilities = [max(instance) for instance in predictions]
# Decode labels using the label encoder
decoded_labels = label_encoder.inverse_transform(predicted_classes)
print("Most likely ISCO code is {} and probability is {}".format(decoded_labels,highest_probabilities))
# Gradio Interface
iface = gr.Interface(fn=launch,inputs=gr.inputs.Textbox(lines=2, placeholder="Enter job title and description here..."),outputs="text")
# Launch the Gradio app
iface.launch()
|