Spaces:
Running
Running
import zipfile | |
import sys | |
import os | |
# Check current directory and list files | |
print("Current Directory:", os.getcwd()) | |
print("Files in Directory:", os.listdir()) | |
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import tf_keras as keras | |
import pandas as pd | |
from tensorflow.keras.models import load_model | |
import classifier_data_lib | |
import tokenization | |
import joblib | |
import gradio as gr | |
model = load_model('ISCO-Coder-BERT.h5', custom_objects={'KerasLayer': hub.KerasLayer}) | |
vocab_file = model.resolved_object.vocab_file.asset_path.numpy() | |
do_lower_case = model.resolved_object.do_lower_case.numpy() | |
tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case) | |
# Parameters | |
max_seq_length = 128 | |
label_list = 424 | |
dummy_label = 100 | |
# Define a function to preprocess the new data | |
def get_feature_new(text, max_seq_length, tokenizer, dummy_label): | |
example = classifier_data_lib.InputExample(guid=None, | |
text_a=text.numpy().decode('utf-8'), | |
text_b=None, | |
label=dummy_label) # Use a valid dummy label | |
feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer) | |
return feature.input_ids, feature.input_mask, feature.segment_ids | |
def get_feature_map_new(text): | |
input_ids, input_mask, segment_ids = tf.py_function( | |
lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label), | |
inp=[text], | |
Tout=[tf.int32, tf.int32, tf.int32] | |
) | |
input_ids.set_shape([max_seq_length]) | |
input_mask.set_shape([max_seq_length]) | |
segment_ids.set_shape([max_seq_length]) | |
x = {'input_word_ids': input_ids, | |
'input_mask': input_mask, | |
'input_type_ids': segment_ids} | |
return x | |
def preprocess_new_data(texts): | |
dataset = tf.data.Dataset.from_tensor_slices((texts,)) | |
dataset = dataset.map(get_feature_map_new, | |
num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
dataset = dataset.batch(32, drop_remainder=False) | |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
return dataset | |
def launch(input): | |
# Load the label encoder | |
label_encoder = joblib.load('label_encoder.joblib') | |
# Preprocess the new data | |
sample_example = [input] | |
new_data_dataset = preprocess_new_data(sample_example) | |
# Assuming you have a model already loaded (add model loading code if needed) | |
# Make predictions on the new data | |
predictions = model.predict(new_data_dataset) | |
# Decode the predictions | |
predicted_classes = [label_list[np.argmax(pred)] for pred in predictions] | |
# Print the predicted classes | |
print(predicted_classes) | |
# Calculate the highest probabilities | |
highest_probabilities = [max(instance) for instance in predictions] | |
# Decode labels using the label encoder | |
decoded_labels = label_encoder.inverse_transform(predicted_classes) | |
print("Most likely ISCO code is {} and probability is {}".format(decoded_labels,highest_probabilities)) | |
# Gradio Interface | |
iface = gr.Interface(fn=launch,inputs=gr.inputs.Textbox(lines=2, placeholder="Enter job title and description here..."),outputs="text") | |
# Launch the Gradio app | |
iface.launch() | |