Spaces:
Running
Running
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for nlp.data.pretrain_dynamic_dataloader.""" | |
import os | |
from absl import logging | |
from absl.testing import parameterized | |
import numpy as np | |
import orbit | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.distribute import combinations | |
from tensorflow.python.distribute import strategy_combinations | |
from official.nlp.configs import bert | |
from official.nlp.configs import encoders | |
from official.nlp.data import pretrain_dataloader | |
from official.nlp.data import pretrain_dynamic_dataloader | |
from official.nlp.tasks import masked_lm | |
def _create_fake_dataset(output_path, seq_length, num_masked_tokens, | |
max_seq_length, num_examples): | |
"""Creates a fake dataset.""" | |
writer = tf.io.TFRecordWriter(output_path) | |
def create_int_feature(values): | |
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return f | |
def create_float_feature(values): | |
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return f | |
rng = np.random.default_rng(37) | |
for _ in range(num_examples): | |
features = {} | |
padding = np.zeros(shape=(max_seq_length - seq_length), dtype=np.int32) | |
input_ids = rng.integers(low=1, high=100, size=(seq_length)) | |
features['input_ids'] = create_int_feature( | |
np.concatenate((input_ids, padding))) | |
features['input_mask'] = create_int_feature( | |
np.concatenate((np.ones_like(input_ids), padding))) | |
features['segment_ids'] = create_int_feature( | |
np.concatenate((np.ones_like(input_ids), padding))) | |
features['position_ids'] = create_int_feature( | |
np.concatenate((np.ones_like(input_ids), padding))) | |
features['masked_lm_positions'] = create_int_feature( | |
rng.integers(60, size=(num_masked_tokens), dtype=np.int64)) | |
features['masked_lm_ids'] = create_int_feature( | |
rng.integers(100, size=(num_masked_tokens), dtype=np.int64)) | |
features['masked_lm_weights'] = create_float_feature( | |
np.ones((num_masked_tokens,), dtype=np.float32)) | |
features['next_sentence_labels'] = create_int_feature(np.array([0])) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
class PretrainDynamicDataLoaderTest(tf.test.TestCase, parameterized.TestCase): | |
def test_distribution_strategy(self, distribution_strategy): | |
max_seq_length = 128 | |
batch_size = 8 | |
input_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
_create_fake_dataset( | |
input_path, | |
seq_length=60, | |
num_masked_tokens=20, | |
max_seq_length=max_seq_length, | |
num_examples=batch_size) | |
data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig( | |
is_training=False, | |
input_path=input_path, | |
seq_bucket_lengths=[64, 128], | |
global_batch_size=batch_size) | |
dataloader = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader( | |
data_config) | |
distributed_ds = orbit.utils.make_distributed_dataset( | |
distribution_strategy, dataloader.load) | |
train_iter = iter(distributed_ds) | |
with distribution_strategy.scope(): | |
config = masked_lm.MaskedLMConfig( | |
init_checkpoint=self.get_temp_dir(), | |
model=bert.PretrainerConfig( | |
encoders.EncoderConfig( | |
bert=encoders.BertEncoderConfig( | |
vocab_size=30522, num_layers=1)), | |
cls_heads=[ | |
bert.ClsHeadConfig( | |
inner_dim=10, num_classes=2, name='next_sentence') | |
]), | |
train_data=data_config) | |
task = masked_lm.MaskedLMTask(config) | |
model = task.build_model() | |
metrics = task.build_metrics() | |
def step_fn(features): | |
return task.validation_step(features, model, metrics=metrics) | |
distributed_outputs = distribution_strategy.run( | |
step_fn, args=(next(train_iter),)) | |
local_results = tf.nest.map_structure( | |
distribution_strategy.experimental_local_results, distributed_outputs) | |
logging.info('Dynamic padding: local_results= %s', str(local_results)) | |
dynamic_metrics = {} | |
for metric in metrics: | |
dynamic_metrics[metric.name] = metric.result() | |
data_config = pretrain_dataloader.BertPretrainDataConfig( | |
is_training=False, | |
input_path=input_path, | |
seq_length=max_seq_length, | |
max_predictions_per_seq=20, | |
global_batch_size=batch_size) | |
dataloader = pretrain_dataloader.BertPretrainDataLoader(data_config) | |
distributed_ds = orbit.utils.make_distributed_dataset( | |
distribution_strategy, dataloader.load) | |
train_iter = iter(distributed_ds) | |
with distribution_strategy.scope(): | |
metrics = task.build_metrics() | |
def step_fn_b(features): | |
return task.validation_step(features, model, metrics=metrics) | |
distributed_outputs = distribution_strategy.run( | |
step_fn_b, args=(next(train_iter),)) | |
local_results = tf.nest.map_structure( | |
distribution_strategy.experimental_local_results, distributed_outputs) | |
logging.info('Static padding: local_results= %s', str(local_results)) | |
static_metrics = {} | |
for metric in metrics: | |
static_metrics[metric.name] = metric.result() | |
for key in static_metrics: | |
# We need to investigate the differences on losses. | |
if key != 'next_sentence_loss': | |
self.assertEqual(dynamic_metrics[key], static_metrics[key]) | |
def test_load_dataset(self): | |
tf.random.set_seed(0) | |
max_seq_length = 128 | |
batch_size = 2 | |
input_path_1 = os.path.join(self.get_temp_dir(), 'train_1.tf_record') | |
_create_fake_dataset( | |
input_path_1, | |
seq_length=60, | |
num_masked_tokens=20, | |
max_seq_length=max_seq_length, | |
num_examples=batch_size) | |
input_path_2 = os.path.join(self.get_temp_dir(), 'train_2.tf_record') | |
_create_fake_dataset( | |
input_path_2, | |
seq_length=100, | |
num_masked_tokens=70, | |
max_seq_length=max_seq_length, | |
num_examples=batch_size) | |
input_paths = ','.join([input_path_1, input_path_2]) | |
data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig( | |
is_training=False, | |
input_path=input_paths, | |
seq_bucket_lengths=[64, 128], | |
use_position_id=True, | |
global_batch_size=batch_size, | |
deterministic=True) | |
dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader( | |
data_config).load() | |
dataset_it = iter(dataset) | |
features = next(dataset_it) | |
self.assertCountEqual([ | |
'input_word_ids', | |
'input_mask', | |
'input_type_ids', | |
'next_sentence_labels', | |
'masked_lm_positions', | |
'masked_lm_ids', | |
'masked_lm_weights', | |
'position_ids', | |
], features.keys()) | |
# Sequence length dimension should be bucketized and pad to 64. | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, 64)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, 64)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, 64)) | |
self.assertEqual(features['position_ids'].shape, (batch_size, 64)) | |
self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 20)) | |
features = next(dataset_it) | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, 128)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, 128)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, 128)) | |
self.assertEqual(features['position_ids'].shape, (batch_size, 128)) | |
self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 70)) | |
def test_load_dataset_not_same_masks(self): | |
max_seq_length = 128 | |
batch_size = 2 | |
input_path_1 = os.path.join(self.get_temp_dir(), 'train_3.tf_record') | |
_create_fake_dataset( | |
input_path_1, | |
seq_length=60, | |
num_masked_tokens=20, | |
max_seq_length=max_seq_length, | |
num_examples=batch_size) | |
input_path_2 = os.path.join(self.get_temp_dir(), 'train_4.tf_record') | |
_create_fake_dataset( | |
input_path_2, | |
seq_length=60, | |
num_masked_tokens=15, | |
max_seq_length=max_seq_length, | |
num_examples=batch_size) | |
input_paths = ','.join([input_path_1, input_path_2]) | |
data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig( | |
is_training=False, | |
input_path=input_paths, | |
seq_bucket_lengths=[64, 128], | |
use_position_id=True, | |
global_batch_size=batch_size * 2) | |
dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader( | |
data_config).load() | |
dataset_it = iter(dataset) | |
with self.assertRaisesRegex( | |
tf.errors.InvalidArgumentError, '.*Number of non padded mask tokens.*'): | |
next(dataset_it) | |
if __name__ == '__main__': | |
tf.test.main() | |