ISCO-code-predictor-api / sentence_prediction_dataloader.py
Pradeep Kumar
Upload 33 files
f18e71f verified
raw
history blame
10.6 kB
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loads dataset for the sentence prediction (classification) task."""
import dataclasses
import functools
from typing import List, Mapping, Optional, Tuple
import tensorflow as tf, tf_keras
import tensorflow_hub as hub
from official.common import dataset_fn
from official.core import config_definitions as cfg
from official.core import input_reader
from official.nlp import modeling
from official.nlp.data import data_loader
from official.nlp.data import data_loader_factory
LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}
@dataclasses.dataclass
class SentencePredictionDataConfig(cfg.DataConfig):
"""Data config for sentence prediction task (tasks/sentence_prediction)."""
input_path: str = ''
global_batch_size: int = 32
is_training: bool = True
seq_length: int = 128
label_type: str = 'int'
# Whether to include the example id number.
include_example_id: bool = False
label_field: str = 'label_ids'
# Maps the key in TfExample to feature name.
# E.g 'label_ids' to 'next_sentence_labels'
label_name: Optional[Tuple[str, str]] = None
# Either tfrecord, sstable, or recordio.
file_type: str = 'tfrecord'
@data_loader_factory.register_data_loader_cls(SentencePredictionDataConfig)
class SentencePredictionDataLoader(data_loader.DataLoader):
"""A class to load dataset for sentence prediction (classification) task."""
def __init__(self, params):
self._params = params
self._seq_length = params.seq_length
self._include_example_id = params.include_example_id
self._label_field = params.label_field
if params.label_name:
self._label_name_mapping = dict([params.label_name])
else:
self._label_name_mapping = dict()
def name_to_features_spec(self):
"""Defines features to decode. Subclass may override to append features."""
label_type = LABEL_TYPES_MAP[self._params.label_type]
name_to_features = {
'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
self._label_field: tf.io.FixedLenFeature([], label_type),
}
if self._include_example_id:
name_to_features['example_id'] = tf.io.FixedLenFeature([], tf.int64)
return name_to_features
def _decode(self, record: tf.Tensor):
"""Decodes a serialized tf.Example."""
example = tf.io.parse_single_example(record, self.name_to_features_spec())
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in example:
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def _parse(self, record: Mapping[str, tf.Tensor]):
"""Parses raw tensors into a dict of tensors to be consumed by the model."""
key_mapping = {
'input_ids': 'input_word_ids',
'input_mask': 'input_mask',
'segment_ids': 'input_type_ids'
}
ret = {}
for record_key in record:
if record_key in key_mapping:
ret[key_mapping[record_key]] = record[record_key]
else:
ret[record_key] = record[record_key]
if self._label_field in self._label_name_mapping:
ret[self._label_name_mapping[self._label_field]] = record[
self._label_field]
return ret
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
reader = input_reader.InputReader(
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
params=self._params,
decoder_fn=self._decode,
parser_fn=self._parse)
return reader.read(input_context)
@dataclasses.dataclass
class SentencePredictionTextDataConfig(cfg.DataConfig):
"""Data config for sentence prediction task with raw text."""
# Either set `input_path`...
input_path: str = ''
# Either `int` or `float`.
label_type: str = 'int'
# ...or `tfds_name` and `tfds_split` to specify input.
tfds_name: str = ''
tfds_split: str = ''
# The name of the text feature fields. The text features will be
# concatenated in order.
text_fields: Optional[List[str]] = None
label_field: str = 'label'
global_batch_size: int = 32
seq_length: int = 128
is_training: bool = True
# Either build preprocessing with Python code by specifying these values
# for modeling.layers.BertTokenizer()/SentencepieceTokenizer()....
tokenization: str = 'WordPiece' # WordPiece or SentencePiece
# Text vocab file if tokenization is WordPiece, or sentencepiece.ModelProto
# file if tokenization is SentencePiece.
vocab_file: str = ''
lower_case: bool = True
# ...or load preprocessing from a SavedModel at this location.
preprocessing_hub_module_url: str = ''
# Either tfrecord or sstsable or recordio.
file_type: str = 'tfrecord'
include_example_id: bool = False
class TextProcessor(tf.Module):
"""Text features processing for sentence prediction task."""
def __init__(self,
seq_length: int,
vocab_file: Optional[str] = None,
tokenization: Optional[str] = None,
lower_case: Optional[bool] = True,
preprocessing_hub_module_url: Optional[str] = None):
if preprocessing_hub_module_url:
self._preprocessing_hub_module = hub.load(preprocessing_hub_module_url)
self._tokenizer = self._preprocessing_hub_module.tokenize
self._pack_inputs = functools.partial(
self._preprocessing_hub_module.bert_pack_inputs,
seq_length=seq_length)
return
if tokenization == 'WordPiece':
self._tokenizer = modeling.layers.BertTokenizer(
vocab_file=vocab_file, lower_case=lower_case)
elif tokenization == 'SentencePiece':
self._tokenizer = modeling.layers.SentencepieceTokenizer(
model_file_path=vocab_file,
lower_case=lower_case,
strip_diacritics=True) # Strip diacritics to follow ALBERT model
else:
raise ValueError('Unsupported tokenization: %s' % tokenization)
self._pack_inputs = modeling.layers.BertPackInputs(
seq_length=seq_length,
special_tokens_dict=self._tokenizer.get_special_tokens_dict())
def __call__(self, segments):
segments = [self._tokenizer(s) for s in segments]
# BertTokenizer returns a RaggedTensor with shape [batch, word, subword],
# and SentencepieceTokenizer returns a RaggedTensor with shape
# [batch, sentencepiece],
segments = [
tf.cast(x.merge_dims(1, -1) if x.shape.rank > 2 else x, tf.int32)
for x in segments
]
return self._pack_inputs(segments)
@data_loader_factory.register_data_loader_cls(SentencePredictionTextDataConfig)
class SentencePredictionTextDataLoader(data_loader.DataLoader):
"""Loads dataset with raw text for sentence prediction task."""
def __init__(self, params):
if bool(params.tfds_name) != bool(params.tfds_split):
raise ValueError('`tfds_name` and `tfds_split` should be specified or '
'unspecified at the same time.')
if bool(params.tfds_name) == bool(params.input_path):
raise ValueError('Must specify either `tfds_name` and `tfds_split` '
'or `input_path`.')
if not params.text_fields:
raise ValueError('Unexpected empty text fields.')
if bool(params.vocab_file) == bool(params.preprocessing_hub_module_url):
raise ValueError('Must specify exactly one of vocab_file (with matching '
'lower_case flag) or preprocessing_hub_module_url.')
self._params = params
self._text_fields = params.text_fields
self._label_field = params.label_field
self._label_type = params.label_type
self._include_example_id = params.include_example_id
self._text_processor = TextProcessor(
seq_length=params.seq_length,
vocab_file=params.vocab_file,
tokenization=params.tokenization,
lower_case=params.lower_case,
preprocessing_hub_module_url=params.preprocessing_hub_module_url)
def _bert_preprocess(self, record: Mapping[str, tf.Tensor]):
"""Berts preprocess."""
segments = [record[x] for x in self._text_fields]
model_inputs = self._text_processor(segments)
for key in record:
if key not in self._text_fields:
model_inputs[key] = record[key]
return model_inputs
def name_to_features_spec(self):
name_to_features = {}
for text_field in self._text_fields:
name_to_features[text_field] = tf.io.FixedLenFeature([], tf.string)
label_type = LABEL_TYPES_MAP[self._label_type]
name_to_features[self._label_field] = tf.io.FixedLenFeature([], label_type)
if self._include_example_id:
name_to_features['example_id'] = tf.io.FixedLenFeature([], tf.int64)
return name_to_features
def _decode(self, record: tf.Tensor):
"""Decodes a serialized tf.Example."""
example = tf.io.parse_single_example(record, self.name_to_features_spec())
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in example:
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
reader = input_reader.InputReader(
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
decoder_fn=self._decode if self._params.input_path else None,
params=self._params,
postprocess_fn=self._bert_preprocess)
return reader.read(input_context)