Spaces:
Running
Running
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# coding=utf-8 | |
"""Tokenization classes implementation. | |
The file is forked from: | |
https://github.com/google-research/bert/blob/master/tokenization.py. | |
""" | |
import collections | |
import re | |
import unicodedata | |
import six | |
import tensorflow as tf, tf_keras | |
import sentencepiece as spm | |
SPIECE_UNDERLINE = "▁" | |
def validate_case_matches_checkpoint(do_lower_case, init_checkpoint): | |
"""Checks whether the casing config is consistent with the checkpoint name.""" | |
# The casing has to be passed in by the user and there is no explicit check | |
# as to whether it matches the checkpoint. The casing information probably | |
# should have been stored in the bert_config.json file, but it's not, so | |
# we have to heuristically detect it to validate. | |
if not init_checkpoint: | |
return | |
m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint) | |
if m is None: | |
return | |
model_name = m.group(1) | |
lower_models = [ | |
"uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12", | |
"multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12" | |
] | |
cased_models = [ | |
"cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", | |
"multi_cased_L-12_H-768_A-12" | |
] | |
is_bad_config = False | |
if model_name in lower_models and not do_lower_case: | |
is_bad_config = True | |
actual_flag = "False" | |
case_name = "lowercased" | |
opposite_flag = "True" | |
if model_name in cased_models and do_lower_case: | |
is_bad_config = True | |
actual_flag = "True" | |
case_name = "cased" | |
opposite_flag = "False" | |
if is_bad_config: | |
raise ValueError( | |
"You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. " | |
"However, `%s` seems to be a %s model, so you " | |
"should pass in `--do_lower_case=%s` so that the fine-tuning matches " | |
"how the model was pre-training. If this error is wrong, please " | |
"just comment out this check." % | |
(actual_flag, init_checkpoint, model_name, case_name, opposite_flag)) | |
def convert_to_unicode(text): | |
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" | |
if six.PY3: | |
if isinstance(text, str): | |
return text | |
elif isinstance(text, bytes): | |
return text.decode("utf-8", "ignore") | |
else: | |
raise ValueError("Unsupported string type: %s" % (type(text))) | |
elif six.PY2: | |
if isinstance(text, str): | |
return text.decode("utf-8", "ignore") | |
elif isinstance(text, unicode): | |
return text | |
else: | |
raise ValueError("Unsupported string type: %s" % (type(text))) | |
else: | |
raise ValueError("Not running on Python2 or Python 3?") | |
def printable_text(text): | |
"""Returns text encoded in a way suitable for print or `tf.logging`.""" | |
# These functions want `str` for both Python2 and Python3, but in one case | |
# it's a Unicode string and in the other it's a byte string. | |
if six.PY3: | |
if isinstance(text, str): | |
return text | |
elif isinstance(text, bytes): | |
return text.decode("utf-8", "ignore") | |
else: | |
raise ValueError("Unsupported string type: %s" % (type(text))) | |
elif six.PY2: | |
if isinstance(text, str): | |
return text | |
elif isinstance(text, unicode): | |
return text.encode("utf-8") | |
else: | |
raise ValueError("Unsupported string type: %s" % (type(text))) | |
else: | |
raise ValueError("Not running on Python2 or Python 3?") | |
def load_vocab(vocab_file): | |
"""Loads a vocabulary file into a dictionary.""" | |
vocab = collections.OrderedDict() | |
index = 0 | |
with tf.io.gfile.GFile(vocab_file, "r") as reader: | |
while True: | |
token = convert_to_unicode(reader.readline()) | |
if not token: | |
break | |
token = token.strip() | |
vocab[token] = index | |
index += 1 | |
return vocab | |
def convert_by_vocab(vocab, items): | |
"""Converts a sequence of [tokens|ids] using the vocab.""" | |
output = [] | |
for item in items: | |
output.append(vocab[item]) | |
return output | |
def convert_tokens_to_ids(vocab, tokens): | |
return convert_by_vocab(vocab, tokens) | |
def convert_ids_to_tokens(inv_vocab, ids): | |
return convert_by_vocab(inv_vocab, ids) | |
def whitespace_tokenize(text): | |
"""Runs basic whitespace cleaning and splitting on a piece of text.""" | |
text = text.strip() | |
if not text: | |
return [] | |
tokens = text.split() | |
return tokens | |
class FullTokenizer(object): | |
"""Runs end-to-end tokenziation.""" | |
def __init__(self, vocab_file, do_lower_case=True, split_on_punc=True): | |
self.vocab = load_vocab(vocab_file) | |
self.inv_vocab = {v: k for k, v in self.vocab.items()} | |
self.basic_tokenizer = BasicTokenizer( | |
do_lower_case=do_lower_case, split_on_punc=split_on_punc) | |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) | |
def tokenize(self, text): | |
split_tokens = [] | |
for token in self.basic_tokenizer.tokenize(text): | |
for sub_token in self.wordpiece_tokenizer.tokenize(token): | |
split_tokens.append(sub_token) | |
return split_tokens | |
def convert_tokens_to_ids(self, tokens): | |
return convert_by_vocab(self.vocab, tokens) | |
def convert_ids_to_tokens(self, ids): | |
return convert_by_vocab(self.inv_vocab, ids) | |
class BasicTokenizer(object): | |
"""Runs basic tokenization (punctuation splitting, lower casing, etc.).""" | |
def __init__(self, do_lower_case=True, split_on_punc=True): | |
"""Constructs a BasicTokenizer. | |
Args: | |
do_lower_case: Whether to lower case the input. | |
split_on_punc: Whether to apply split on punctuations. By default BERT | |
starts a new token for punctuations. This makes detokenization difficult | |
for tasks like seq2seq decoding. | |
""" | |
self.do_lower_case = do_lower_case | |
self.split_on_punc = split_on_punc | |
def tokenize(self, text): | |
"""Tokenizes a piece of text.""" | |
text = convert_to_unicode(text) | |
text = self._clean_text(text) | |
# This was added on November 1st, 2018 for the multilingual and Chinese | |
# models. This is also applied to the English models now, but it doesn't | |
# matter since the English models were not trained on any Chinese data | |
# and generally don't have any Chinese data in them (there are Chinese | |
# characters in the vocabulary because Wikipedia does have some Chinese | |
# words in the English Wikipedia.). | |
text = self._tokenize_chinese_chars(text) | |
orig_tokens = whitespace_tokenize(text) | |
split_tokens = [] | |
for token in orig_tokens: | |
if self.do_lower_case: | |
token = token.lower() | |
token = self._run_strip_accents(token) | |
if self.split_on_punc: | |
split_tokens.extend(self._run_split_on_punc(token)) | |
else: | |
split_tokens.append(token) | |
output_tokens = whitespace_tokenize(" ".join(split_tokens)) | |
return output_tokens | |
def _run_strip_accents(self, text): | |
"""Strips accents from a piece of text.""" | |
text = unicodedata.normalize("NFD", text) | |
output = [] | |
for char in text: | |
cat = unicodedata.category(char) | |
if cat == "Mn": | |
continue | |
output.append(char) | |
return "".join(output) | |
def _run_split_on_punc(self, text): | |
"""Splits punctuation on a piece of text.""" | |
chars = list(text) | |
i = 0 | |
start_new_word = True | |
output = [] | |
while i < len(chars): | |
char = chars[i] | |
if _is_punctuation(char): | |
output.append([char]) | |
start_new_word = True | |
else: | |
if start_new_word: | |
output.append([]) | |
start_new_word = False | |
output[-1].append(char) | |
i += 1 | |
return ["".join(x) for x in output] | |
def _tokenize_chinese_chars(self, text): | |
"""Adds whitespace around any CJK character.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if self._is_chinese_char(cp): | |
output.append(" ") | |
output.append(char) | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
def _is_chinese_char(self, cp): | |
"""Checks whether CP is the codepoint of a CJK character.""" | |
# This defines a "chinese character" as anything in the CJK Unicode block: | |
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
# | |
# Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
# despite its name. The modern Korean Hangul alphabet is a different block, | |
# as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
# space-separated words, so they are not treated specially and handled | |
# like the all of the other languages. | |
if ((cp >= 0x4E00 and cp <= 0x9FFF) or # | |
(cp >= 0x3400 and cp <= 0x4DBF) or # | |
(cp >= 0x20000 and cp <= 0x2A6DF) or # | |
(cp >= 0x2A700 and cp <= 0x2B73F) or # | |
(cp >= 0x2B740 and cp <= 0x2B81F) or # | |
(cp >= 0x2B820 and cp <= 0x2CEAF) or | |
(cp >= 0xF900 and cp <= 0xFAFF) or # | |
(cp >= 0x2F800 and cp <= 0x2FA1F)): # | |
return True | |
return False | |
def _clean_text(self, text): | |
"""Performs invalid character removal and whitespace cleanup on text.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if cp == 0 or cp == 0xfffd or _is_control(char): | |
continue | |
if _is_whitespace(char): | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
class WordpieceTokenizer(object): | |
"""Runs WordPiece tokenziation.""" | |
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=400): | |
self.vocab = vocab | |
self.unk_token = unk_token | |
self.max_input_chars_per_word = max_input_chars_per_word | |
def tokenize(self, text): | |
"""Tokenizes a piece of text into its word pieces. | |
This uses a greedy longest-match-first algorithm to perform tokenization | |
using the given vocabulary. | |
For example: | |
input = "unaffable" | |
output = ["un", "##aff", "##able"] | |
Args: | |
text: A single token or whitespace separated tokens. This should have | |
already been passed through `BasicTokenizer. | |
Returns: | |
A list of wordpiece tokens. | |
""" | |
text = convert_to_unicode(text) | |
output_tokens = [] | |
for token in whitespace_tokenize(text): | |
chars = list(token) | |
if len(chars) > self.max_input_chars_per_word: | |
output_tokens.append(self.unk_token) | |
continue | |
is_bad = False | |
start = 0 | |
sub_tokens = [] | |
while start < len(chars): | |
end = len(chars) | |
cur_substr = None | |
while start < end: | |
substr = "".join(chars[start:end]) | |
if start > 0: | |
substr = "##" + substr | |
if substr in self.vocab: | |
cur_substr = substr | |
break | |
end -= 1 | |
if cur_substr is None: | |
is_bad = True | |
break | |
sub_tokens.append(cur_substr) | |
start = end | |
if is_bad: | |
output_tokens.append(self.unk_token) | |
else: | |
output_tokens.extend(sub_tokens) | |
return output_tokens | |
def _is_whitespace(char): | |
"""Checks whether `chars` is a whitespace character.""" | |
# \t, \n, and \r are technically control characters but we treat them | |
# as whitespace since they are generally considered as such. | |
if char == " " or char == "\t" or char == "\n" or char == "\r": | |
return True | |
cat = unicodedata.category(char) | |
if cat == "Zs": | |
return True | |
return False | |
def _is_control(char): | |
"""Checks whether `chars` is a control character.""" | |
# These are technically control characters but we count them as whitespace | |
# characters. | |
if char == "\t" or char == "\n" or char == "\r": | |
return False | |
cat = unicodedata.category(char) | |
if cat in ("Cc", "Cf"): | |
return True | |
return False | |
def _is_punctuation(char): | |
"""Checks whether `chars` is a punctuation character.""" | |
cp = ord(char) | |
# We treat all non-letter/number ASCII as punctuation. | |
# Characters such as "^", "$", and "`" are not in the Unicode | |
# Punctuation class but we treat them as punctuation anyways, for | |
# consistency. | |
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or | |
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): | |
return True | |
cat = unicodedata.category(char) | |
if cat.startswith("P"): | |
return True | |
return False | |
def preprocess_text(inputs, remove_space=True, lower=False): | |
"""Preprocesses data by removing extra space and normalize data. | |
This method is used together with sentence piece tokenizer and is forked from: | |
https://github.com/google-research/google-research/blob/e1f6fa00/albert/tokenization.py | |
Args: | |
inputs: The input text. | |
remove_space: Whether to remove the extra space. | |
lower: Whether to lowercase the text. | |
Returns: | |
The preprocessed text. | |
""" | |
outputs = inputs | |
if remove_space: | |
outputs = " ".join(inputs.strip().split()) | |
if six.PY2 and isinstance(outputs, str): | |
try: | |
outputs = six.ensure_text(outputs, "utf-8") | |
except UnicodeDecodeError: | |
outputs = six.ensure_text(outputs, "latin-1") | |
outputs = unicodedata.normalize("NFKD", outputs) | |
outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) | |
if lower: | |
outputs = outputs.lower() | |
return outputs | |
def encode_pieces(sp_model, text, sample=False): | |
"""Segements text into pieces. | |
This method is used together with sentence piece tokenizer and is forked from: | |
https://github.com/google-research/google-research/blob/e1f6fa00/albert/tokenization.py | |
Args: | |
sp_model: A spm.SentencePieceProcessor object. | |
text: The input text to be segemented. | |
sample: Whether to randomly sample a segmentation output or return a | |
deterministic one. | |
Returns: | |
A list of token pieces. | |
""" | |
if six.PY2 and isinstance(text, six.text_type): | |
text = six.ensure_binary(text, "utf-8") | |
if not sample: | |
pieces = sp_model.EncodeAsPieces(text) | |
else: | |
pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1) | |
new_pieces = [] | |
for piece in pieces: | |
piece = printable_text(piece) | |
if len(piece) > 1 and piece[-1] == "," and piece[-2].isdigit(): | |
cur_pieces = sp_model.EncodeAsPieces(piece[:-1].replace( | |
SPIECE_UNDERLINE, "")) | |
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: | |
if len(cur_pieces[0]) == 1: | |
cur_pieces = cur_pieces[1:] | |
else: | |
cur_pieces[0] = cur_pieces[0][1:] | |
cur_pieces.append(piece[-1]) | |
new_pieces.extend(cur_pieces) | |
else: | |
new_pieces.append(piece) | |
return new_pieces | |
def encode_ids(sp_model, text, sample=False): | |
"""Segments text and return token ids. | |
This method is used together with sentence piece tokenizer and is forked from: | |
https://github.com/google-research/google-research/blob/e1f6fa00/albert/tokenization.py | |
Args: | |
sp_model: A spm.SentencePieceProcessor object. | |
text: The input text to be segemented. | |
sample: Whether to randomly sample a segmentation output or return a | |
deterministic one. | |
Returns: | |
A list of token ids. | |
""" | |
pieces = encode_pieces(sp_model, text, sample=sample) | |
ids = [sp_model.PieceToId(piece) for piece in pieces] | |
return ids | |
class FullSentencePieceTokenizer(object): | |
"""Runs end-to-end sentence piece tokenization. | |
The interface of this class is intended to keep the same as above | |
`FullTokenizer` class for easier usage. | |
""" | |
def __init__(self, sp_model_file): | |
"""Inits FullSentencePieceTokenizer. | |
Args: | |
sp_model_file: The path to the sentence piece model file. | |
""" | |
self.sp_model = spm.SentencePieceProcessor() | |
self.sp_model.Load(sp_model_file) | |
self.vocab = { | |
self.sp_model.IdToPiece(i): i | |
for i in six.moves.range(self.sp_model.GetPieceSize()) | |
} | |
def tokenize(self, text): | |
"""Tokenizes text into pieces.""" | |
return encode_pieces(self.sp_model, text) | |
def convert_tokens_to_ids(self, tokens): | |
"""Converts a list of tokens to a list of ids.""" | |
return [self.sp_model.PieceToId(printable_text(token)) for token in tokens] | |
def convert_ids_to_tokens(self, ids): | |
"""Converts a list of ids ot a list of tokens.""" | |
return [self.sp_model.IdToPiece(id_) for id_ in ids] | |