Pradeep Kumar commited on
Commit
535cfb6
·
verified ·
1 Parent(s): 8fd53d8

Delete pretrain_text_dataloader.py

Browse files
Files changed (1) hide show
  1. pretrain_text_dataloader.py +0 -226
pretrain_text_dataloader.py DELETED
@@ -1,226 +0,0 @@
1
- # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- """Loads text dataset for the BERT pretraining task."""
16
- import dataclasses
17
- from typing import List, Mapping, Optional, Text
18
-
19
- import tensorflow as tf, tf_keras
20
- import tensorflow_text as tf_text
21
-
22
- from official.common import dataset_fn
23
- from official.core import config_definitions as cfg
24
- from official.core import input_reader
25
- from official.nlp.data import data_loader
26
- from official.nlp.data import data_loader_factory
27
- from official.nlp.modeling.ops import segment_extractor
28
-
29
-
30
- @dataclasses.dataclass
31
- class BertPretrainTextDataConfig(cfg.DataConfig):
32
- """Data config for BERT pretraining task (tasks/masked_lm) from text."""
33
- input_path: str = ""
34
- doc_batch_size: int = 8
35
- global_batch_size: int = 512
36
- is_training: bool = True
37
- seq_length: int = 512
38
- max_predictions_per_seq: int = 76
39
- use_next_sentence_label: bool = True
40
- # The name of the text feature fields. The text features will be
41
- # concatenated in order.
42
- # Note: More than 1 field name is not compatible with NSP.
43
- text_field_names: Optional[List[str]] = dataclasses.field(
44
- default_factory=lambda: ["text"])
45
- vocab_file_path: str = ""
46
- masking_rate: float = 0.15
47
- use_whole_word_masking: bool = False
48
- file_type: str = "tfrecord"
49
-
50
-
51
- _CLS_TOKEN = b"[CLS]"
52
- _SEP_TOKEN = b"[SEP]"
53
- _MASK_TOKEN = b"[MASK]"
54
- _NUM_OOV_BUCKETS = 1
55
- # Accounts for [CLS] and 2 x [SEP] tokens
56
- _NUM_SPECIAL_TOKENS = 3
57
-
58
-
59
- @data_loader_factory.register_data_loader_cls(BertPretrainTextDataConfig)
60
- class BertPretrainTextDataLoader(data_loader.DataLoader):
61
- """A class to load text dataset for BERT pretraining task."""
62
-
63
- def __init__(self, params):
64
- """Inits `BertPretrainTextDataLoader` class.
65
-
66
- Args:
67
- params: A `BertPretrainTextDataConfig` object.
68
- """
69
- if len(params.text_field_names) > 1 and params.use_next_sentence_label:
70
- raise ValueError("Currently there is no support for more than text field "
71
- "while generating next sentence labels.")
72
-
73
- self._params = params
74
- self._seq_length = params.seq_length
75
- self._max_predictions_per_seq = params.max_predictions_per_seq
76
- self._use_next_sentence_label = params.use_next_sentence_label
77
- self._masking_rate = params.masking_rate
78
- self._use_whole_word_masking = params.use_whole_word_masking
79
-
80
- lookup_table_init = tf.lookup.TextFileInitializer(
81
- params.vocab_file_path,
82
- key_dtype=tf.string,
83
- key_index=tf.lookup.TextFileIndex.WHOLE_LINE,
84
- value_dtype=tf.int64,
85
- value_index=tf.lookup.TextFileIndex.LINE_NUMBER)
86
- self._vocab_lookup_table = tf.lookup.StaticVocabularyTable(
87
- lookup_table_init,
88
- num_oov_buckets=_NUM_OOV_BUCKETS,
89
- lookup_key_dtype=tf.string)
90
-
91
- self._cls_token = self._vocab_lookup_table.lookup(tf.constant(_CLS_TOKEN))
92
- self._sep_token = self._vocab_lookup_table.lookup(tf.constant(_SEP_TOKEN))
93
- self._mask_token = self._vocab_lookup_table.lookup(tf.constant(_MASK_TOKEN))
94
-
95
- # -_NUM_OOV_BUCKETS to offset unused OOV bucket.
96
- self._vocab_size = self._vocab_lookup_table.size() - _NUM_OOV_BUCKETS
97
-
98
- def _decode(self, record: tf.Tensor) -> Mapping[Text, tf.Tensor]:
99
- """Decodes a serialized tf.Example."""
100
- name_to_features = {}
101
- for text_field_name in self._params.text_field_names:
102
- name_to_features[text_field_name] = tf.io.FixedLenFeature([], tf.string)
103
- return tf.io.parse_single_example(record, name_to_features)
104
-
105
- def _tokenize(self, segments):
106
- """Tokenize the input segments."""
107
- # Tokenize segments
108
- tokenizer = tf_text.BertTokenizer(
109
- self._vocab_lookup_table, token_out_type=tf.int64)
110
-
111
- if self._use_whole_word_masking:
112
- # tokenize the segments which should have the shape:
113
- # [num_sentence, (num_words), (num_wordpieces)]
114
- segments = [tokenizer.tokenize(s) for s in segments]
115
- else:
116
- # tokenize the segments and merge out the token dimension so that each
117
- # segment has the shape: [num_sentence, (num_wordpieces)]
118
- segments = [tokenizer.tokenize(s).merge_dims(-2, -1) for s in segments]
119
-
120
- # Truncate inputs
121
- trimmer = tf_text.WaterfallTrimmer(
122
- self._seq_length - _NUM_SPECIAL_TOKENS, axis=-1)
123
- truncated_segments = trimmer.trim(segments)
124
-
125
- # Combine segments, get segment ids and add special tokens
126
- return tf_text.combine_segments(
127
- truncated_segments,
128
- start_of_sequence_id=self._cls_token,
129
- end_of_segment_id=self._sep_token)
130
-
131
- def _bert_preprocess(self, record: Mapping[str, tf.Tensor]):
132
- """Parses raw tensors into a dict of tensors to be consumed by the model."""
133
- if self._use_next_sentence_label:
134
- input_text = record[self._params.text_field_names[0]]
135
- # Split sentences
136
- sentence_breaker = tf_text.RegexSplitter()
137
- sentences = sentence_breaker.split(input_text)
138
-
139
- # Extract next-sentence-prediction labels and segments
140
- next_or_random_segment, is_next = (
141
- segment_extractor.get_next_sentence_labels(sentences))
142
- # merge dims to change shape from [num_docs, (num_segments)] to
143
- # [total_num_segments]
144
- is_next = is_next.merge_dims(-2, -1)
145
-
146
- # construct segments with shape [(num_sentence)]
147
- segments = [
148
- sentences.merge_dims(-2, -1),
149
- next_or_random_segment.merge_dims(-2, -1)
150
- ]
151
- else:
152
- segments = [record[name] for name in self._params.text_field_names]
153
-
154
- segments_combined, segment_ids = self._tokenize(segments)
155
-
156
- # Dynamic masking
157
- item_selector = tf_text.RandomItemSelector(
158
- self._max_predictions_per_seq,
159
- selection_rate=self._masking_rate,
160
- unselectable_ids=[self._cls_token, self._sep_token],
161
- shuffle_fn=(tf.identity if self._params.deterministic else None))
162
- values_chooser = tf_text.MaskValuesChooser(
163
- vocab_size=self._vocab_size, mask_token=self._mask_token)
164
- masked_input_ids, masked_lm_positions, masked_lm_ids = (
165
- tf_text.mask_language_model(
166
- segments_combined,
167
- item_selector=item_selector,
168
- mask_values_chooser=values_chooser,
169
- ))
170
-
171
- # Pad out to fixed shape and get input mask.
172
- seq_lengths = {
173
- "input_word_ids": self._seq_length,
174
- "input_type_ids": self._seq_length,
175
- "masked_lm_positions": self._max_predictions_per_seq,
176
- "masked_lm_ids": self._max_predictions_per_seq,
177
- }
178
- model_inputs = {
179
- "input_word_ids": masked_input_ids,
180
- "input_type_ids": segment_ids,
181
- "masked_lm_positions": masked_lm_positions,
182
- "masked_lm_ids": masked_lm_ids,
183
- }
184
- padded_inputs_and_mask = tf.nest.map_structure(tf_text.pad_model_inputs,
185
- model_inputs, seq_lengths)
186
- model_inputs = {
187
- k: padded_inputs_and_mask[k][0] for k in padded_inputs_and_mask
188
- }
189
- model_inputs["masked_lm_weights"] = tf.cast(
190
- padded_inputs_and_mask["masked_lm_ids"][1], tf.float32)
191
- model_inputs["input_mask"] = padded_inputs_and_mask["input_word_ids"][1]
192
-
193
- if self._use_next_sentence_label:
194
- model_inputs["next_sentence_labels"] = is_next
195
-
196
- for name in model_inputs:
197
- t = model_inputs[name]
198
- if t.dtype == tf.int64:
199
- t = tf.cast(t, tf.int32)
200
- model_inputs[name] = t
201
-
202
- return model_inputs
203
-
204
- def load(self, input_context: Optional[tf.distribute.InputContext] = None):
205
- """Returns a tf.dataset.Dataset."""
206
-
207
- def _batch_docs(dataset, input_context):
208
- per_core_doc_batch_size = (
209
- input_context.get_per_replica_batch_size(self._params.doc_batch_size)
210
- if input_context else self._params.doc_batch_size)
211
- return dataset.batch(per_core_doc_batch_size)
212
-
213
- reader = input_reader.InputReader(
214
- params=self._params,
215
- dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
216
- decoder_fn=self._decode if self._params.input_path else None,
217
- transform_and_batch_fn=_batch_docs
218
- if self._use_next_sentence_label else None,
219
- postprocess_fn=self._bert_preprocess)
220
- transformed_inputs = reader.read(input_context)
221
- per_core_example_batch_size = (
222
- input_context.get_per_replica_batch_size(self._params.global_batch_size)
223
- if input_context else self._params.global_batch_size)
224
- batched_inputs = transformed_inputs.unbatch().batch(
225
- per_core_example_batch_size, self._params.drop_remainder)
226
- return batched_inputs.prefetch(tf.data.experimental.AUTOTUNE)