Spaces:
Sleeping
Sleeping
Pradeep Kumar
commited on
Delete export_tfhub_lib.py
Browse files- export_tfhub_lib.py +0 -493
export_tfhub_lib.py
DELETED
@@ -1,493 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Library of components of export_tfhub.py. See docstring there for more."""
|
16 |
-
|
17 |
-
import contextlib
|
18 |
-
import hashlib
|
19 |
-
import os
|
20 |
-
import tempfile
|
21 |
-
|
22 |
-
from typing import Optional, Text, Tuple
|
23 |
-
|
24 |
-
# Import libraries
|
25 |
-
from absl import logging
|
26 |
-
import tensorflow as tf, tf_keras
|
27 |
-
# pylint: disable=g-direct-tensorflow-import TODO(b/175369555): Remove these.
|
28 |
-
from tensorflow.core.protobuf import saved_model_pb2
|
29 |
-
from tensorflow.python.ops import control_flow_assert
|
30 |
-
# pylint: enable=g-direct-tensorflow-import
|
31 |
-
from official.legacy.bert import configs
|
32 |
-
from official.modeling import tf_utils
|
33 |
-
from official.nlp.configs import encoders
|
34 |
-
from official.nlp.modeling import layers
|
35 |
-
from official.nlp.modeling import models
|
36 |
-
from official.nlp.modeling import networks
|
37 |
-
|
38 |
-
|
39 |
-
def get_bert_encoder(bert_config):
|
40 |
-
"""Returns a BertEncoder with dict outputs."""
|
41 |
-
bert_encoder = networks.BertEncoder(
|
42 |
-
vocab_size=bert_config.vocab_size,
|
43 |
-
hidden_size=bert_config.hidden_size,
|
44 |
-
num_layers=bert_config.num_hidden_layers,
|
45 |
-
num_attention_heads=bert_config.num_attention_heads,
|
46 |
-
intermediate_size=bert_config.intermediate_size,
|
47 |
-
activation=tf_utils.get_activation(bert_config.hidden_act),
|
48 |
-
dropout_rate=bert_config.hidden_dropout_prob,
|
49 |
-
attention_dropout_rate=bert_config.attention_probs_dropout_prob,
|
50 |
-
max_sequence_length=bert_config.max_position_embeddings,
|
51 |
-
type_vocab_size=bert_config.type_vocab_size,
|
52 |
-
initializer=tf_keras.initializers.TruncatedNormal(
|
53 |
-
stddev=bert_config.initializer_range),
|
54 |
-
embedding_width=bert_config.embedding_size,
|
55 |
-
dict_outputs=True)
|
56 |
-
|
57 |
-
return bert_encoder
|
58 |
-
|
59 |
-
|
60 |
-
def get_do_lower_case(do_lower_case, vocab_file=None, sp_model_file=None):
|
61 |
-
"""Returns do_lower_case, replacing None by a guess from vocab file name."""
|
62 |
-
if do_lower_case is not None:
|
63 |
-
return do_lower_case
|
64 |
-
elif vocab_file:
|
65 |
-
do_lower_case = "uncased" in vocab_file
|
66 |
-
logging.info("Using do_lower_case=%s based on name of vocab_file=%s",
|
67 |
-
do_lower_case, vocab_file)
|
68 |
-
return do_lower_case
|
69 |
-
elif sp_model_file:
|
70 |
-
do_lower_case = True # All public ALBERTs (as of Oct 2020) do it.
|
71 |
-
logging.info("Defaulting to do_lower_case=%s for Sentencepiece tokenizer",
|
72 |
-
do_lower_case)
|
73 |
-
return do_lower_case
|
74 |
-
else:
|
75 |
-
raise ValueError("Must set vocab_file or sp_model_file.")
|
76 |
-
|
77 |
-
|
78 |
-
def _create_model(
|
79 |
-
*,
|
80 |
-
bert_config: Optional[configs.BertConfig] = None,
|
81 |
-
encoder_config: Optional[encoders.EncoderConfig] = None,
|
82 |
-
with_mlm: bool,
|
83 |
-
) -> Tuple[tf_keras.Model, tf_keras.Model]:
|
84 |
-
"""Creates the model to export and the model to restore the checkpoint.
|
85 |
-
|
86 |
-
Args:
|
87 |
-
bert_config: A legacy `BertConfig` to create a `BertEncoder` object. Exactly
|
88 |
-
one of encoder_config and bert_config must be set.
|
89 |
-
encoder_config: An `EncoderConfig` to create an encoder of the configured
|
90 |
-
type (`BertEncoder` or other).
|
91 |
-
with_mlm: A bool to control the second component of the result. If True,
|
92 |
-
will create a `BertPretrainerV2` object; otherwise, will create a
|
93 |
-
`BertEncoder` object.
|
94 |
-
|
95 |
-
Returns:
|
96 |
-
A Tuple of (1) a Keras model that will be exported, (2) a `BertPretrainerV2`
|
97 |
-
object or `BertEncoder` object depending on the value of `with_mlm`
|
98 |
-
argument, which contains the first model and will be used for restoring
|
99 |
-
weights from the checkpoint.
|
100 |
-
"""
|
101 |
-
if (bert_config is not None) == (encoder_config is not None):
|
102 |
-
raise ValueError("Exactly one of `bert_config` and `encoder_config` "
|
103 |
-
"can be specified, but got %s and %s" %
|
104 |
-
(bert_config, encoder_config))
|
105 |
-
|
106 |
-
if bert_config is not None:
|
107 |
-
encoder = get_bert_encoder(bert_config)
|
108 |
-
else:
|
109 |
-
encoder = encoders.build_encoder(encoder_config)
|
110 |
-
|
111 |
-
# Convert from list of named inputs to dict of inputs keyed by name.
|
112 |
-
# Only the latter accepts a dict of inputs after restoring from SavedModel.
|
113 |
-
if isinstance(encoder.inputs, list) or isinstance(encoder.inputs, tuple):
|
114 |
-
encoder_inputs_dict = {x.name: x for x in encoder.inputs}
|
115 |
-
else:
|
116 |
-
# encoder.inputs by default is dict for BertEncoderV2.
|
117 |
-
encoder_inputs_dict = encoder.inputs
|
118 |
-
encoder_output_dict = encoder(encoder_inputs_dict)
|
119 |
-
# For interchangeability with other text representations,
|
120 |
-
# add "default" as an alias for BERT's whole-input reptesentations.
|
121 |
-
encoder_output_dict["default"] = encoder_output_dict["pooled_output"]
|
122 |
-
core_model = tf_keras.Model(
|
123 |
-
inputs=encoder_inputs_dict, outputs=encoder_output_dict)
|
124 |
-
|
125 |
-
if with_mlm:
|
126 |
-
if bert_config is not None:
|
127 |
-
hidden_act = bert_config.hidden_act
|
128 |
-
else:
|
129 |
-
assert encoder_config is not None
|
130 |
-
hidden_act = encoder_config.get().hidden_activation
|
131 |
-
|
132 |
-
pretrainer = models.BertPretrainerV2(
|
133 |
-
encoder_network=encoder,
|
134 |
-
mlm_activation=tf_utils.get_activation(hidden_act))
|
135 |
-
|
136 |
-
if isinstance(pretrainer.inputs, dict):
|
137 |
-
pretrainer_inputs_dict = pretrainer.inputs
|
138 |
-
else:
|
139 |
-
pretrainer_inputs_dict = {x.name: x for x in pretrainer.inputs}
|
140 |
-
pretrainer_output_dict = pretrainer(pretrainer_inputs_dict)
|
141 |
-
mlm_model = tf_keras.Model(
|
142 |
-
inputs=pretrainer_inputs_dict, outputs=pretrainer_output_dict)
|
143 |
-
# Set `_auto_track_sub_layers` to False, so that the additional weights
|
144 |
-
# from `mlm` sub-object will not be included in the core model.
|
145 |
-
# TODO(b/169210253): Use a public API when available.
|
146 |
-
core_model._auto_track_sub_layers = False # pylint: disable=protected-access
|
147 |
-
core_model.mlm = mlm_model
|
148 |
-
return core_model, pretrainer
|
149 |
-
else:
|
150 |
-
return core_model, encoder
|
151 |
-
|
152 |
-
|
153 |
-
def export_model(export_path: Text,
|
154 |
-
*,
|
155 |
-
bert_config: Optional[configs.BertConfig] = None,
|
156 |
-
encoder_config: Optional[encoders.EncoderConfig] = None,
|
157 |
-
model_checkpoint_path: Text,
|
158 |
-
with_mlm: bool,
|
159 |
-
copy_pooler_dense_to_encoder: bool = False,
|
160 |
-
vocab_file: Optional[Text] = None,
|
161 |
-
sp_model_file: Optional[Text] = None,
|
162 |
-
do_lower_case: Optional[bool] = None) -> None:
|
163 |
-
"""Exports an Encoder as SavedModel after restoring pre-trained weights.
|
164 |
-
|
165 |
-
The exported SavedModel implements a superset of the Encoder API for
|
166 |
-
Text embeddings with Transformer Encoders described at
|
167 |
-
https://www.tensorflow.org/hub/common_saved_model_apis/text.
|
168 |
-
|
169 |
-
In particular, the exported SavedModel can be used in the following way:
|
170 |
-
|
171 |
-
```
|
172 |
-
# Calls default interface (encoder only).
|
173 |
-
|
174 |
-
encoder = hub.load(...)
|
175 |
-
encoder_inputs = dict(
|
176 |
-
input_word_ids=..., # Shape [batch, seq_length], dtype=int32
|
177 |
-
input_mask=..., # Shape [batch, seq_length], dtype=int32
|
178 |
-
input_type_ids=..., # Shape [batch, seq_length], dtype=int32
|
179 |
-
)
|
180 |
-
encoder_outputs = encoder(encoder_inputs)
|
181 |
-
assert encoder_outputs.keys() == {
|
182 |
-
"pooled_output", # Shape [batch_size, width], dtype=float32
|
183 |
-
"default", # Alias for "pooled_output" (aligns with other models).
|
184 |
-
"sequence_output" # Shape [batch_size, seq_length, width], dtype=float32
|
185 |
-
"encoder_outputs", # List of Tensors with outputs of all transformer layers.
|
186 |
-
}
|
187 |
-
```
|
188 |
-
|
189 |
-
If `with_mlm` is True, the exported SavedModel can also be called in the
|
190 |
-
following way:
|
191 |
-
|
192 |
-
```
|
193 |
-
# Calls expanded interface that includes logits of the Masked Language Model.
|
194 |
-
mlm_inputs = dict(
|
195 |
-
input_word_ids=..., # Shape [batch, seq_length], dtype=int32
|
196 |
-
input_mask=..., # Shape [batch, seq_length], dtype=int32
|
197 |
-
input_type_ids=..., # Shape [batch, seq_length], dtype=int32
|
198 |
-
masked_lm_positions=..., # Shape [batch, num_predictions], dtype=int32
|
199 |
-
)
|
200 |
-
mlm_outputs = encoder.mlm(mlm_inputs)
|
201 |
-
assert mlm_outputs.keys() == {
|
202 |
-
"pooled_output", # Shape [batch, width], dtype=float32
|
203 |
-
"sequence_output", # Shape [batch, seq_length, width], dtype=float32
|
204 |
-
"encoder_outputs", # List of Tensors with outputs of all transformer layers.
|
205 |
-
"mlm_logits" # Shape [batch, num_predictions, vocab_size], dtype=float32
|
206 |
-
}
|
207 |
-
```
|
208 |
-
|
209 |
-
Args:
|
210 |
-
export_path: The SavedModel output directory.
|
211 |
-
bert_config: An optional `configs.BertConfig` object. Note: exactly one of
|
212 |
-
`bert_config` and following `encoder_config` must be specified.
|
213 |
-
encoder_config: An optional `encoders.EncoderConfig` object.
|
214 |
-
model_checkpoint_path: The path to the checkpoint.
|
215 |
-
with_mlm: Whether to export the additional mlm sub-object.
|
216 |
-
copy_pooler_dense_to_encoder: Whether to copy the pooler's dense layer used
|
217 |
-
in the next sentence prediction task to the encoder.
|
218 |
-
vocab_file: The path to the wordpiece vocab file, or None.
|
219 |
-
sp_model_file: The path to the sentencepiece model file, or None. Exactly
|
220 |
-
one of vocab_file and sp_model_file must be set.
|
221 |
-
do_lower_case: Whether to lower-case text before tokenization.
|
222 |
-
"""
|
223 |
-
if with_mlm:
|
224 |
-
core_model, pretrainer = _create_model(
|
225 |
-
bert_config=bert_config,
|
226 |
-
encoder_config=encoder_config,
|
227 |
-
with_mlm=with_mlm)
|
228 |
-
encoder = pretrainer.encoder_network
|
229 |
-
# It supports both the new pretrainer checkpoint produced by TF-NLP and
|
230 |
-
# the checkpoint converted from TF1 (original BERT, SmallBERTs).
|
231 |
-
checkpoint_items = pretrainer.checkpoint_items
|
232 |
-
checkpoint = tf.train.Checkpoint(**checkpoint_items)
|
233 |
-
else:
|
234 |
-
core_model, encoder = _create_model(
|
235 |
-
bert_config=bert_config,
|
236 |
-
encoder_config=encoder_config,
|
237 |
-
with_mlm=with_mlm)
|
238 |
-
checkpoint = tf.train.Checkpoint(
|
239 |
-
model=encoder, # Legacy checkpoints.
|
240 |
-
encoder=encoder)
|
241 |
-
checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched()
|
242 |
-
|
243 |
-
if copy_pooler_dense_to_encoder:
|
244 |
-
logging.info("Copy pooler's dense layer to the encoder.")
|
245 |
-
pooler_checkpoint = tf.train.Checkpoint(
|
246 |
-
**{"next_sentence.pooler_dense": encoder.pooler_layer})
|
247 |
-
pooler_checkpoint.restore(
|
248 |
-
model_checkpoint_path).assert_existing_objects_matched()
|
249 |
-
|
250 |
-
# Before SavedModels for preprocessing appeared in Oct 2020, the encoders
|
251 |
-
# provided this information to let users do preprocessing themselves.
|
252 |
-
# We keep doing that for now. It helps users to upgrade incrementally.
|
253 |
-
# Moreover, it offers an escape hatch for advanced users who want the
|
254 |
-
# full vocab, not the high-level operations from the preprocessing model.
|
255 |
-
if vocab_file:
|
256 |
-
core_model.vocab_file = tf.saved_model.Asset(vocab_file)
|
257 |
-
if do_lower_case is None:
|
258 |
-
raise ValueError("Must pass do_lower_case if passing vocab_file.")
|
259 |
-
core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False)
|
260 |
-
elif sp_model_file:
|
261 |
-
# This was used by ALBERT, with implied values of do_lower_case=True
|
262 |
-
# and strip_diacritics=True.
|
263 |
-
core_model.sp_model_file = tf.saved_model.Asset(sp_model_file)
|
264 |
-
else:
|
265 |
-
raise ValueError("Must set vocab_file or sp_model_file")
|
266 |
-
core_model.save(export_path, include_optimizer=False, save_format="tf")
|
267 |
-
|
268 |
-
|
269 |
-
class BertPackInputsSavedModelWrapper(tf.train.Checkpoint):
|
270 |
-
"""Wraps a BertPackInputs layer for export to SavedModel.
|
271 |
-
|
272 |
-
The wrapper object is suitable for use with `tf.saved_model.save()` and
|
273 |
-
`.load()`. The wrapper object is callable with inputs and outputs like the
|
274 |
-
BertPackInputs layer, but differs from saving an unwrapped Keras object:
|
275 |
-
|
276 |
-
- The inputs can be a list of 1 or 2 RaggedTensors of dtype int32 and
|
277 |
-
ragged rank 1 or 2. (In Keras, saving to a tf.function in a SavedModel
|
278 |
-
would fix the number of RaggedTensors and their ragged rank.)
|
279 |
-
- The call accepts an optional keyword argument `seq_length=` to override
|
280 |
-
the layer's .seq_length hyperparameter. (In Keras, a hyperparameter
|
281 |
-
could not be changed after saving to a tf.function in a SavedModel.)
|
282 |
-
"""
|
283 |
-
|
284 |
-
def __init__(self, bert_pack_inputs: layers.BertPackInputs):
|
285 |
-
super().__init__()
|
286 |
-
|
287 |
-
# Preserve the layer's configured seq_length as a default but make it
|
288 |
-
# overridable. Having this dynamically determined default argument
|
289 |
-
# requires self.__call__ to be defined in this indirect way.
|
290 |
-
default_seq_length = bert_pack_inputs.seq_length
|
291 |
-
|
292 |
-
@tf.function(autograph=False)
|
293 |
-
def call(inputs, seq_length=default_seq_length):
|
294 |
-
return layers.BertPackInputs.bert_pack_inputs(
|
295 |
-
inputs,
|
296 |
-
seq_length=seq_length,
|
297 |
-
start_of_sequence_id=bert_pack_inputs.start_of_sequence_id,
|
298 |
-
end_of_segment_id=bert_pack_inputs.end_of_segment_id,
|
299 |
-
padding_id=bert_pack_inputs.padding_id)
|
300 |
-
|
301 |
-
self.__call__ = call
|
302 |
-
|
303 |
-
for ragged_rank in range(1, 3):
|
304 |
-
for num_segments in range(1, 3):
|
305 |
-
_ = self.__call__.get_concrete_function([
|
306 |
-
tf.RaggedTensorSpec([None] * (ragged_rank + 1), dtype=tf.int32)
|
307 |
-
for _ in range(num_segments)
|
308 |
-
],
|
309 |
-
seq_length=tf.TensorSpec(
|
310 |
-
[], tf.int32))
|
311 |
-
|
312 |
-
|
313 |
-
def create_preprocessing(*,
|
314 |
-
vocab_file: Optional[str] = None,
|
315 |
-
sp_model_file: Optional[str] = None,
|
316 |
-
do_lower_case: bool,
|
317 |
-
tokenize_with_offsets: bool,
|
318 |
-
default_seq_length: int) -> tf_keras.Model:
|
319 |
-
"""Returns a preprocessing Model for given tokenization parameters.
|
320 |
-
|
321 |
-
This function builds a Keras Model with attached subobjects suitable for
|
322 |
-
saving to a SavedModel. The resulting SavedModel implements the Preprocessor
|
323 |
-
API for Text embeddings with Transformer Encoders described at
|
324 |
-
https://www.tensorflow.org/hub/common_saved_model_apis/text.
|
325 |
-
|
326 |
-
Args:
|
327 |
-
vocab_file: The path to the wordpiece vocab file, or None.
|
328 |
-
sp_model_file: The path to the sentencepiece model file, or None. Exactly
|
329 |
-
one of vocab_file and sp_model_file must be set. This determines the type
|
330 |
-
of tokenzer that is used.
|
331 |
-
do_lower_case: Whether to do lower case.
|
332 |
-
tokenize_with_offsets: Whether to include the .tokenize_with_offsets
|
333 |
-
subobject.
|
334 |
-
default_seq_length: The sequence length of preprocessing results from root
|
335 |
-
callable. This is also the default sequence length for the
|
336 |
-
bert_pack_inputs subobject.
|
337 |
-
|
338 |
-
Returns:
|
339 |
-
A tf_keras.Model object with several attached subobjects, suitable for
|
340 |
-
saving as a preprocessing SavedModel.
|
341 |
-
"""
|
342 |
-
# Select tokenizer.
|
343 |
-
if bool(vocab_file) == bool(sp_model_file):
|
344 |
-
raise ValueError("Must set exactly one of vocab_file, sp_model_file")
|
345 |
-
if vocab_file:
|
346 |
-
tokenize = layers.BertTokenizer(
|
347 |
-
vocab_file=vocab_file,
|
348 |
-
lower_case=do_lower_case,
|
349 |
-
tokenize_with_offsets=tokenize_with_offsets)
|
350 |
-
else:
|
351 |
-
tokenize = layers.SentencepieceTokenizer(
|
352 |
-
model_file_path=sp_model_file,
|
353 |
-
lower_case=do_lower_case,
|
354 |
-
strip_diacritics=True, # Strip diacritics to follow ALBERT model.
|
355 |
-
tokenize_with_offsets=tokenize_with_offsets)
|
356 |
-
|
357 |
-
# The root object of the preprocessing model can be called to do
|
358 |
-
# one-shot preprocessing for users with single-sentence inputs.
|
359 |
-
sentences = tf_keras.layers.Input(shape=(), dtype=tf.string, name="sentences")
|
360 |
-
if tokenize_with_offsets:
|
361 |
-
tokens, start_offsets, limit_offsets = tokenize(sentences)
|
362 |
-
else:
|
363 |
-
tokens = tokenize(sentences)
|
364 |
-
pack = layers.BertPackInputs(
|
365 |
-
seq_length=default_seq_length,
|
366 |
-
special_tokens_dict=tokenize.get_special_tokens_dict())
|
367 |
-
model_inputs = pack(tokens)
|
368 |
-
preprocessing = tf_keras.Model(sentences, model_inputs)
|
369 |
-
|
370 |
-
# Individual steps of preprocessing are made available as named subobjects
|
371 |
-
# to enable more general preprocessing. For saving, they need to be Models
|
372 |
-
# in their own right.
|
373 |
-
preprocessing.tokenize = tf_keras.Model(sentences, tokens)
|
374 |
-
# Provide an equivalent to tokenize.get_special_tokens_dict().
|
375 |
-
preprocessing.tokenize.get_special_tokens_dict = tf.train.Checkpoint()
|
376 |
-
preprocessing.tokenize.get_special_tokens_dict.__call__ = tf.function(
|
377 |
-
lambda: tokenize.get_special_tokens_dict(), # pylint: disable=[unnecessary-lambda]
|
378 |
-
input_signature=[])
|
379 |
-
if tokenize_with_offsets:
|
380 |
-
preprocessing.tokenize_with_offsets = tf_keras.Model(
|
381 |
-
sentences, [tokens, start_offsets, limit_offsets])
|
382 |
-
preprocessing.tokenize_with_offsets.get_special_tokens_dict = (
|
383 |
-
preprocessing.tokenize.get_special_tokens_dict)
|
384 |
-
# Conceptually, this should be
|
385 |
-
# preprocessing.bert_pack_inputs = tf_keras.Model(tokens, model_inputs)
|
386 |
-
# but technicalities require us to use a wrapper (see comments there).
|
387 |
-
# In particular, seq_length can be overridden when calling this.
|
388 |
-
preprocessing.bert_pack_inputs = BertPackInputsSavedModelWrapper(pack)
|
389 |
-
|
390 |
-
return preprocessing
|
391 |
-
|
392 |
-
|
393 |
-
def _move_to_tmpdir(file_path: Optional[Text], tmpdir: Text) -> Optional[Text]:
|
394 |
-
"""Returns new path with same basename and hash of original path."""
|
395 |
-
if file_path is None:
|
396 |
-
return None
|
397 |
-
olddir, filename = os.path.split(file_path)
|
398 |
-
hasher = hashlib.sha1()
|
399 |
-
hasher.update(olddir.encode("utf-8"))
|
400 |
-
target_dir = os.path.join(tmpdir, hasher.hexdigest())
|
401 |
-
target_file = os.path.join(target_dir, filename)
|
402 |
-
tf.io.gfile.mkdir(target_dir)
|
403 |
-
tf.io.gfile.copy(file_path, target_file)
|
404 |
-
return target_file
|
405 |
-
|
406 |
-
|
407 |
-
def export_preprocessing(export_path: Text,
|
408 |
-
*,
|
409 |
-
vocab_file: Optional[Text] = None,
|
410 |
-
sp_model_file: Optional[Text] = None,
|
411 |
-
do_lower_case: bool,
|
412 |
-
tokenize_with_offsets: bool,
|
413 |
-
default_seq_length: int,
|
414 |
-
experimental_disable_assert: bool = False) -> None:
|
415 |
-
"""Exports preprocessing to a SavedModel for TF Hub."""
|
416 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
417 |
-
# TODO(b/175369555): Remove experimental_disable_assert and its use.
|
418 |
-
with _maybe_disable_assert(experimental_disable_assert):
|
419 |
-
preprocessing = create_preprocessing(
|
420 |
-
vocab_file=_move_to_tmpdir(vocab_file, tmpdir),
|
421 |
-
sp_model_file=_move_to_tmpdir(sp_model_file, tmpdir),
|
422 |
-
do_lower_case=do_lower_case,
|
423 |
-
tokenize_with_offsets=tokenize_with_offsets,
|
424 |
-
default_seq_length=default_seq_length)
|
425 |
-
preprocessing.save(export_path, include_optimizer=False, save_format="tf")
|
426 |
-
if experimental_disable_assert:
|
427 |
-
_check_no_assert(export_path)
|
428 |
-
# It helps the unit test to prevent stray copies of the vocab file.
|
429 |
-
if tf.io.gfile.exists(tmpdir):
|
430 |
-
raise IOError("Failed to clean up TemporaryDirectory")
|
431 |
-
|
432 |
-
|
433 |
-
# TODO(b/175369555): Remove all workarounds for this bug of TensorFlow 2.4
|
434 |
-
# when this bug is no longer a concern for publishing new models.
|
435 |
-
# TensorFlow 2.4 has a placement issue with Assert ops in tf.functions called
|
436 |
-
# from Dataset.map() on a TPU worker. They end up on the TPU coordinator,
|
437 |
-
# and invoking them from the TPU worker is either inefficient (when possible)
|
438 |
-
# or impossible (notably when using "headless" TPU workers on Cloud that do not
|
439 |
-
# have a channel to the coordinator). The bug has been fixed in time for TF 2.5.
|
440 |
-
# To work around this, the following code avoids Assert ops in the exported
|
441 |
-
# SavedModels. It monkey-patches calls to tf.Assert from inside TensorFlow and
|
442 |
-
# replaces them by a no-op while building the exported model. This is fragile,
|
443 |
-
# so _check_no_assert() validates the result. The resulting model should be fine
|
444 |
-
# to read on future versions of TF, even if this workaround at export time
|
445 |
-
# may break eventually. (Failing unit tests will tell.)
|
446 |
-
|
447 |
-
|
448 |
-
def _dont_assert(condition, data, summarize=None, name="Assert"):
|
449 |
-
"""The no-op version of tf.Assert installed by _maybe_disable_assert."""
|
450 |
-
del condition, data, summarize # Unused.
|
451 |
-
if tf.executing_eagerly():
|
452 |
-
return
|
453 |
-
with tf.name_scope(name):
|
454 |
-
return tf.no_op(name="dont_assert")
|
455 |
-
|
456 |
-
|
457 |
-
@contextlib.contextmanager
|
458 |
-
def _maybe_disable_assert(disable_assert):
|
459 |
-
"""Scoped monkey patch of control_flow_assert.Assert to a no-op."""
|
460 |
-
if not disable_assert:
|
461 |
-
yield
|
462 |
-
return
|
463 |
-
|
464 |
-
original_assert = control_flow_assert.Assert
|
465 |
-
control_flow_assert.Assert = _dont_assert
|
466 |
-
yield
|
467 |
-
control_flow_assert.Assert = original_assert
|
468 |
-
|
469 |
-
|
470 |
-
def _check_no_assert(saved_model_path):
|
471 |
-
"""Raises AssertionError if SavedModel contains Assert ops."""
|
472 |
-
saved_model_filename = os.path.join(saved_model_path, "saved_model.pb")
|
473 |
-
with tf.io.gfile.GFile(saved_model_filename, "rb") as f:
|
474 |
-
saved_model = saved_model_pb2.SavedModel.FromString(f.read())
|
475 |
-
|
476 |
-
assert_nodes = []
|
477 |
-
graph_def = saved_model.meta_graphs[0].graph_def
|
478 |
-
assert_nodes += [
|
479 |
-
"node '{}' in global graph".format(n.name)
|
480 |
-
for n in graph_def.node
|
481 |
-
if n.op == "Assert"
|
482 |
-
]
|
483 |
-
for fdef in graph_def.library.function:
|
484 |
-
assert_nodes += [
|
485 |
-
"node '{}' in function '{}'".format(n.name, fdef.signature.name)
|
486 |
-
for n in fdef.node_def
|
487 |
-
if n.op == "Assert"
|
488 |
-
]
|
489 |
-
if assert_nodes:
|
490 |
-
raise AssertionError(
|
491 |
-
"Internal tool error: "
|
492 |
-
"failed to suppress {} Assert ops in SavedModel:\n{}".format(
|
493 |
-
len(assert_nodes), "\n".join(assert_nodes[:10])))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|