Spaces:
Sleeping
Sleeping
Pradeep Kumar
commited on
Delete create_xlnet_pretraining_data_test.py
Browse files
create_xlnet_pretraining_data_test.py
DELETED
@@ -1,355 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Tests for official.nlp.data.create_xlnet_pretraining_data."""
|
16 |
-
import os
|
17 |
-
import tempfile
|
18 |
-
from typing import List
|
19 |
-
|
20 |
-
from absl import logging
|
21 |
-
from absl.testing import parameterized
|
22 |
-
|
23 |
-
import numpy as np
|
24 |
-
import tensorflow as tf, tf_keras
|
25 |
-
|
26 |
-
from official.nlp.data import create_xlnet_pretraining_data as cpd
|
27 |
-
|
28 |
-
_VOCAB_WORDS = ["vocab_1", "vocab_2"]
|
29 |
-
|
30 |
-
|
31 |
-
# pylint: disable=invalid-name
|
32 |
-
def _create_files(
|
33 |
-
temp_dir: str, file_contents: List[List[str]]) -> List[str]:
|
34 |
-
"""Writes arbitrary documents into files."""
|
35 |
-
root_dir = tempfile.mkdtemp(dir=temp_dir)
|
36 |
-
files = []
|
37 |
-
|
38 |
-
for i, file_content in enumerate(file_contents):
|
39 |
-
destination = os.path.join(root_dir, "%d.txt" % i)
|
40 |
-
with open(destination, "wb") as f:
|
41 |
-
for line in file_content:
|
42 |
-
f.write(line.encode("utf-8"))
|
43 |
-
files.append(destination)
|
44 |
-
return files
|
45 |
-
|
46 |
-
|
47 |
-
def _get_mock_tokenizer():
|
48 |
-
"""Creates a mock tokenizer."""
|
49 |
-
|
50 |
-
class MockSpieceModel:
|
51 |
-
"""Mock Spiece model for testing."""
|
52 |
-
|
53 |
-
def __init__(self):
|
54 |
-
self._special_piece_to_id = {
|
55 |
-
"<unk>": 0,
|
56 |
-
}
|
57 |
-
for piece in set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~')):
|
58 |
-
self._special_piece_to_id[piece] = 1
|
59 |
-
|
60 |
-
def EncodeAsPieces(self, inputs: str) -> List[str]:
|
61 |
-
return inputs
|
62 |
-
|
63 |
-
def SampleEncodeAsPieces(self,
|
64 |
-
inputs: str,
|
65 |
-
nbest_size: int,
|
66 |
-
theta: float) -> List[str]:
|
67 |
-
del nbest_size, theta
|
68 |
-
return inputs
|
69 |
-
|
70 |
-
def PieceToId(self, piece: str) -> int:
|
71 |
-
return ord(piece[0])
|
72 |
-
|
73 |
-
def IdToPiece(self, id_: int) -> str:
|
74 |
-
return chr(id_) * 3
|
75 |
-
|
76 |
-
class Tokenizer:
|
77 |
-
"""Mock Tokenizer for testing."""
|
78 |
-
|
79 |
-
def __init__(self):
|
80 |
-
self.sp_model = MockSpieceModel()
|
81 |
-
|
82 |
-
def convert_ids_to_tokens(self, ids: List[int]) -> List[str]:
|
83 |
-
return [self.sp_model.IdToPiece(id_) for id_ in ids]
|
84 |
-
|
85 |
-
return Tokenizer()
|
86 |
-
|
87 |
-
|
88 |
-
class PreprocessDataTest(tf.test.TestCase):
|
89 |
-
|
90 |
-
def test_remove_extraneous_space(self):
|
91 |
-
line = " abc "
|
92 |
-
output = cpd._preprocess_line(line)
|
93 |
-
self.assertEqual(output, "abc")
|
94 |
-
|
95 |
-
def test_symbol_replacements(self):
|
96 |
-
self.assertEqual(cpd._preprocess_line("``abc``"), "\"abc\"")
|
97 |
-
self.assertEqual(cpd._preprocess_line("''abc''"), "\"abc\"")
|
98 |
-
|
99 |
-
def test_accent_replacements(self):
|
100 |
-
self.assertEqual(cpd._preprocess_line("åbc"), "abc")
|
101 |
-
|
102 |
-
def test_lower_case(self):
|
103 |
-
self.assertEqual(cpd._preprocess_line("ABC", do_lower_case=True), "abc")
|
104 |
-
|
105 |
-
def test_end_to_end(self):
|
106 |
-
self.assertEqual(
|
107 |
-
cpd._preprocess_line("HelLo ``wórLd``", do_lower_case=True),
|
108 |
-
"hello \"world\"")
|
109 |
-
|
110 |
-
|
111 |
-
class PreprocessAndTokenizeFilesTest(tf.test.TestCase):
|
112 |
-
|
113 |
-
def test_basic_end_to_end(self):
|
114 |
-
documents = [
|
115 |
-
[
|
116 |
-
"This is sentence 1.\n",
|
117 |
-
"This is sentence 2.\n",
|
118 |
-
"Sentence 3 is what this is.\n",
|
119 |
-
],
|
120 |
-
[
|
121 |
-
"This is the second document.\n",
|
122 |
-
"This is the second line of the second document.\n"
|
123 |
-
],
|
124 |
-
]
|
125 |
-
input_files = _create_files(temp_dir=self.get_temp_dir(),
|
126 |
-
file_contents=documents)
|
127 |
-
all_data = cpd.preprocess_and_tokenize_input_files(
|
128 |
-
input_files=input_files,
|
129 |
-
tokenizer=_get_mock_tokenizer(),
|
130 |
-
log_example_freq=1)
|
131 |
-
|
132 |
-
self.assertEqual(len(all_data), len(documents))
|
133 |
-
for token_ids, sentence_ids in all_data:
|
134 |
-
self.assertEqual(len(token_ids), len(sentence_ids))
|
135 |
-
|
136 |
-
def test_basic_correctness(self):
|
137 |
-
documents = [["a\n", "b\n", "c\n"]]
|
138 |
-
input_files = _create_files(temp_dir=self.get_temp_dir(),
|
139 |
-
file_contents=documents)
|
140 |
-
all_data = cpd.preprocess_and_tokenize_input_files(
|
141 |
-
input_files=input_files,
|
142 |
-
tokenizer=_get_mock_tokenizer(),
|
143 |
-
log_example_freq=1)
|
144 |
-
|
145 |
-
token_ids, sentence_ids = all_data[0]
|
146 |
-
|
147 |
-
self.assertAllClose(token_ids, [97, 98, 99])
|
148 |
-
self.assertAllClose(sentence_ids, [True, False, True])
|
149 |
-
|
150 |
-
def test_correctness_with_spaces_and_accents(self):
|
151 |
-
documents = [[
|
152 |
-
" å \n",
|
153 |
-
"b \n",
|
154 |
-
" c \n",
|
155 |
-
]]
|
156 |
-
input_files = _create_files(temp_dir=self.get_temp_dir(),
|
157 |
-
file_contents=documents)
|
158 |
-
all_data = cpd.preprocess_and_tokenize_input_files(
|
159 |
-
input_files=input_files,
|
160 |
-
tokenizer=_get_mock_tokenizer(),
|
161 |
-
log_example_freq=1)
|
162 |
-
|
163 |
-
token_ids, sentence_ids = all_data[0]
|
164 |
-
|
165 |
-
self.assertAllClose(token_ids, [97, 98, 99])
|
166 |
-
self.assertAllClose(sentence_ids, [True, False, True])
|
167 |
-
|
168 |
-
|
169 |
-
class BatchReshapeTests(tf.test.TestCase):
|
170 |
-
|
171 |
-
def test_basic_functionality(self):
|
172 |
-
per_host_batch_size = 3
|
173 |
-
mock_shape = (20,)
|
174 |
-
|
175 |
-
# Should truncate and reshape.
|
176 |
-
expected_result_shape = (3, 6)
|
177 |
-
|
178 |
-
tokens = np.zeros(mock_shape)
|
179 |
-
sentence_ids = np.zeros(mock_shape)
|
180 |
-
|
181 |
-
reshaped_data = cpd._reshape_to_batch_dimensions(
|
182 |
-
tokens=tokens,
|
183 |
-
sentence_ids=sentence_ids,
|
184 |
-
per_host_batch_size=per_host_batch_size)
|
185 |
-
for values in reshaped_data:
|
186 |
-
self.assertEqual(len(values.flatten()) % per_host_batch_size, 0)
|
187 |
-
self.assertAllClose(values.shape, expected_result_shape)
|
188 |
-
|
189 |
-
|
190 |
-
class CreateSegmentsTest(tf.test.TestCase):
|
191 |
-
|
192 |
-
def test_basic_functionality(self):
|
193 |
-
data_length = 10
|
194 |
-
tokens = np.arange(data_length)
|
195 |
-
sentence_ids = np.concatenate([np.zeros(data_length // 2),
|
196 |
-
np.ones(data_length // 2)])
|
197 |
-
begin_index = 0
|
198 |
-
total_length = 8
|
199 |
-
a_data, b_data, label = cpd._create_a_and_b_segments(
|
200 |
-
tokens=tokens,
|
201 |
-
sentence_ids=sentence_ids,
|
202 |
-
begin_index=begin_index,
|
203 |
-
total_length=total_length,
|
204 |
-
no_cut_probability=0.)
|
205 |
-
self.assertAllClose(a_data, [0, 1, 2, 3])
|
206 |
-
self.assertAllClose(b_data, [5, 6, 7, 8])
|
207 |
-
self.assertEqual(label, 1)
|
208 |
-
|
209 |
-
def test_no_cut(self):
|
210 |
-
data_length = 10
|
211 |
-
tokens = np.arange(data_length)
|
212 |
-
sentence_ids = np.zeros(data_length)
|
213 |
-
|
214 |
-
begin_index = 0
|
215 |
-
total_length = 8
|
216 |
-
a_data, b_data, label = cpd._create_a_and_b_segments(
|
217 |
-
tokens=tokens,
|
218 |
-
sentence_ids=sentence_ids,
|
219 |
-
begin_index=begin_index,
|
220 |
-
total_length=total_length,
|
221 |
-
no_cut_probability=0.)
|
222 |
-
self.assertGreater(len(a_data), 0)
|
223 |
-
self.assertGreater(len(b_data), 0)
|
224 |
-
self.assertEqual(label, 0)
|
225 |
-
|
226 |
-
def test_no_cut_with_probability(self):
|
227 |
-
data_length = 10
|
228 |
-
tokens = np.arange(data_length)
|
229 |
-
sentence_ids = np.concatenate([np.zeros(data_length // 2),
|
230 |
-
np.ones(data_length // 2)])
|
231 |
-
begin_index = 0
|
232 |
-
total_length = 8
|
233 |
-
a_data, b_data, label = cpd._create_a_and_b_segments(
|
234 |
-
tokens=tokens,
|
235 |
-
sentence_ids=sentence_ids,
|
236 |
-
begin_index=begin_index,
|
237 |
-
total_length=total_length,
|
238 |
-
no_cut_probability=1.)
|
239 |
-
self.assertGreater(len(a_data), 0)
|
240 |
-
self.assertGreater(len(b_data), 0)
|
241 |
-
self.assertEqual(label, 0)
|
242 |
-
|
243 |
-
|
244 |
-
class CreateInstancesTest(tf.test.TestCase):
|
245 |
-
"""Tests conversions of Token/Sentence IDs to training instances."""
|
246 |
-
|
247 |
-
def test_basic(self):
|
248 |
-
data_length = 12
|
249 |
-
tokens = np.arange(data_length)
|
250 |
-
sentence_ids = np.zeros(data_length)
|
251 |
-
seq_length = 8
|
252 |
-
instances = cpd._convert_tokens_to_instances(
|
253 |
-
tokens=tokens,
|
254 |
-
sentence_ids=sentence_ids,
|
255 |
-
per_host_batch_size=2,
|
256 |
-
seq_length=seq_length,
|
257 |
-
reuse_length=4,
|
258 |
-
tokenizer=_get_mock_tokenizer(),
|
259 |
-
bi_data=False,
|
260 |
-
num_cores_per_host=1,
|
261 |
-
logging_frequency=1)
|
262 |
-
for instance in instances:
|
263 |
-
self.assertEqual(len(instance.data), seq_length)
|
264 |
-
self.assertEqual(len(instance.segment_ids), seq_length)
|
265 |
-
self.assertIsInstance(instance.label, int)
|
266 |
-
self.assertIsInstance(instance.boundary_indices, list)
|
267 |
-
|
268 |
-
|
269 |
-
class TFRecordPathTests(tf.test.TestCase):
|
270 |
-
|
271 |
-
def test_basic(self):
|
272 |
-
base_kwargs = dict(
|
273 |
-
per_host_batch_size=1,
|
274 |
-
num_cores_per_host=1,
|
275 |
-
seq_length=2,
|
276 |
-
reuse_length=1)
|
277 |
-
|
278 |
-
config1 = dict(
|
279 |
-
prefix="test",
|
280 |
-
suffix="",
|
281 |
-
bi_data=True,
|
282 |
-
use_eod_token=False,
|
283 |
-
do_lower_case=True)
|
284 |
-
config1.update(base_kwargs)
|
285 |
-
expectation1 = "test_seqlen-2_reuse-1_bs-1_cores-1_uncased_bi.tfrecord"
|
286 |
-
self.assertEqual(cpd.get_tfrecord_name(**config1), expectation1)
|
287 |
-
|
288 |
-
config2 = dict(
|
289 |
-
prefix="",
|
290 |
-
suffix="test",
|
291 |
-
bi_data=False,
|
292 |
-
use_eod_token=False,
|
293 |
-
do_lower_case=False)
|
294 |
-
config2.update(base_kwargs)
|
295 |
-
expectation2 = "seqlen-2_reuse-1_bs-1_cores-1_cased_uni_test.tfrecord"
|
296 |
-
self.assertEqual(cpd.get_tfrecord_name(**config2), expectation2)
|
297 |
-
|
298 |
-
config3 = dict(
|
299 |
-
prefix="",
|
300 |
-
suffix="",
|
301 |
-
use_eod_token=True,
|
302 |
-
bi_data=False,
|
303 |
-
do_lower_case=True)
|
304 |
-
config3.update(base_kwargs)
|
305 |
-
expectation3 = "seqlen-2_reuse-1_bs-1_cores-1_uncased_eod_uni.tfrecord"
|
306 |
-
self.assertEqual(cpd.get_tfrecord_name(**config3), expectation3)
|
307 |
-
|
308 |
-
|
309 |
-
class TestCreateTFRecords(parameterized.TestCase, tf.test.TestCase):
|
310 |
-
|
311 |
-
@parameterized.named_parameters(
|
312 |
-
("bi_data_only", True, False, False),
|
313 |
-
("eod_token_only", False, True, True),
|
314 |
-
("lower_case_only", False, False, True),
|
315 |
-
("all_enabled", True, True, True),
|
316 |
-
)
|
317 |
-
def test_end_to_end(self,
|
318 |
-
bi_data: bool,
|
319 |
-
use_eod_token: bool,
|
320 |
-
do_lower_case: bool):
|
321 |
-
tokenizer = _get_mock_tokenizer()
|
322 |
-
|
323 |
-
num_documents = 5
|
324 |
-
sentences_per_document = 10
|
325 |
-
document_length = 50
|
326 |
-
|
327 |
-
documents = [
|
328 |
-
["a " * document_length for _ in range(sentences_per_document)]
|
329 |
-
for _ in range(num_documents)]
|
330 |
-
|
331 |
-
save_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
|
332 |
-
files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents)
|
333 |
-
|
334 |
-
cpd.create_tfrecords(
|
335 |
-
tokenizer=tokenizer,
|
336 |
-
input_file_or_files=",".join(files),
|
337 |
-
use_eod_token=use_eod_token,
|
338 |
-
do_lower_case=do_lower_case,
|
339 |
-
per_host_batch_size=8,
|
340 |
-
seq_length=8,
|
341 |
-
reuse_length=4,
|
342 |
-
bi_data=bi_data,
|
343 |
-
num_cores_per_host=2,
|
344 |
-
save_dir=save_dir)
|
345 |
-
|
346 |
-
self.assertTrue(any(filter(lambda x: x.endswith(".json"),
|
347 |
-
os.listdir(save_dir))))
|
348 |
-
self.assertTrue(any(filter(lambda x: x.endswith(".tfrecord"),
|
349 |
-
os.listdir(save_dir))))
|
350 |
-
|
351 |
-
|
352 |
-
if __name__ == "__main__":
|
353 |
-
np.random.seed(0)
|
354 |
-
logging.set_verbosity(logging.INFO)
|
355 |
-
tf.test.main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|