NSTiwari's picture
Update app.py
8e354ef verified
import google.generativeai as genai
from PIL import Image
import re
import cv2
import numpy as np
import gradio as gr
def parse_bounding_box(response):
bounding_boxes = re.findall(r'\[(\d+,\s*\d+,\s*\d+,\s*\d+,\s*[\w\s]+)\]', response)
# Convert each group into a list of integers and labels.
parsed_boxes = []
for box in bounding_boxes:
parts = box.split(',')
numbers = list(map(int, parts[:-1]))
label = parts[-1].strip()
parsed_boxes.append((numbers, label))
# Return the list of bounding boxes with their labels.
return parsed_boxes
# Draw bounding boxes with labels.
def draw_bounding_boxes(image, bounding_boxes_with_labels):
label_colors = {}
if image.mode != 'RGB':
image = image.convert('RGB')
image = np.array(image)
for bounding_box, label in bounding_boxes_with_labels:
# Normalize the bounding box coordinates
width, height = image.shape[1], image.shape[0]
ymin, xmin, ymax, xmax = bounding_box
x1 = int(xmin / 1000 * width)
y1 = int(ymin / 1000 * height)
x2 = int(xmax / 1000 * width)
y2 = int(ymax / 1000 * height)
if label not in label_colors:
color = np.random.randint(0, 256, (3,)).tolist()
label_colors[label] = color
else:
color = label_colors[label]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
font_thickness = 2
box_thickness = 2
text_size = cv2.getTextSize(label, font, font_scale, font_thickness)[0]
text_bg_x1 = x1
text_bg_y1 = y1 - text_size[1] - 5
text_bg_x2 = x1 + text_size[0] + 8
text_bg_y2 = y1
cv2.rectangle(image, (text_bg_x1, text_bg_y1), (text_bg_x2, text_bg_y2), color, -1)
cv2.putText(image, label, (x1 + 2, y1 - 5), font, font_scale, (255, 255, 255), font_thickness)
cv2.rectangle(image, (x1, y1), (x2, y2), color, box_thickness)
image = Image.fromarray(image)
return image
def detect_objects(api_key, prompt, input_image):
genai.configure(api_key=api_key)
img = Image.open(input_image)
model = genai.GenerativeModel(model_name='gemini-1.5-pro')
response = model.generate_content([
img,
(
f"Return bounding boxes for {prompt} in the image in the following format as"
" a list. \n [ymin, xmin, ymax, xmax, object_name]. "
),
])
result = response.text
result = result[result.find('-'):].strip()
bounding_box = parse_bounding_box(result)
output = draw_bounding_boxes(img, bounding_box)
return output
# Gradio app
demo = gr.Interface(
fn=detect_objects,
inputs=[
gr.Textbox(label="Your Gemini API Key", type="password"),
gr.Textbox(label="Object(s) to detect", value="famous personality"),
gr.Image(type="filepath", label="Input Image")
],
outputs=gr.Image(type="pil", label="Detected Image"),
title="Object Detection using Gemini ✨",
description="Detect objects in images using the Gemini.",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch(debug=True)