Spaces:
Build error
Build error
File size: 4,879 Bytes
409f81b 2c02a9e 409f81b 84f3457 8ceb607 47ecda0 2c02a9e ba470cd 2c02a9e ba470cd 2c02a9e 409f81b 2c02a9e 47ecda0 2c02a9e 47ecda0 409f81b 261cad3 ba470cd 6e6d28c ba470cd 6e6d28c ba470cd 409f81b 47ecda0 261cad3 43e526a 409f81b 2c02a9e 8ceb607 6e6d28c 70fd172 ba470cd 2c02a9e 6e6d28c ba470cd 6e6d28c ba470cd 6e6d28c 2c02a9e ba470cd 2c02a9e 261cad3 ba470cd 6e6d28c 70fd172 47ecda0 0385c04 84f3457 409f81b d7100c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import fitz
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
import gradio as gr
from typing import List
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
text = ""
try:
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text += page.get_text()
except Exception as e:
print(f"Error extracting text from PDF: {e}")
return text
# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
text = ""
try:
doc = Document(docx_path)
text = "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
print(f"Error extracting text from DOCX: {e}")
return text
# Initialize the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Hugging Face API token
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
# Initialize the HuggingFace LLM
llm = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/gpt2",
model_kwargs={"api_key": api_token}
)
# Initialize the HuggingFace embeddings
embedding = HuggingFaceEmbeddings()
# Load or create FAISS index
index_path = "faiss_index.pkl"
document_texts_path = "document_texts.pkl"
document_texts = []
if os.path.exists(index_path) and os.path.exists(document_texts_path):
try:
with open(index_path, "rb") as f:
index = pickle.load(f)
print("Loaded FAISS index from faiss_index.pkl")
with open(document_texts_path, "rb") as f:
document_texts = pickle.load(f)
print("Loaded document texts from document_texts.pkl")
except Exception as e:
print(f"Error loading FAISS index or document texts: {e}")
else:
# Create a new FAISS index if it doesn't exist
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
with open(index_path, "wb") as f:
pickle.dump(index, f)
print("Created new FAISS index and saved to faiss_index.pkl")
def upload_files(files):
global index, document_texts
try:
for file_path in files:
if file_path.endswith('.pdf'):
text = extract_text_from_pdf(file_path)
elif file_path.endswith('.docx'):
text = extract_text_from_docx(file_path)
else:
return "Unsupported file format"
# Process the text and update FAISS index
sentences = text.split("\n")
embeddings = embedding_model.encode(sentences)
index.add(np.array(embeddings))
document_texts.append(text)
# Save the updated index and documents
with open(index_path, "wb") as f:
pickle.dump(index, f)
print("Saved updated FAISS index to faiss_index.pkl")
with open(document_texts_path, "wb") as f:
pickle.dump(document_texts, f)
print("Saved updated document texts to document_texts.pkl")
return "Files processed successfully"
except Exception as e:
print(f"Error processing files: {e}")
return f"Error processing files: {e}"
def query_text(text):
try:
# Encode the query text
query_embedding = embedding_model.encode([text])
# Search the FAISS index
D, I = index.search(np.array(query_embedding), k=5)
top_documents = []
for idx in I[0]:
if idx != -1 and idx < len(document_texts): # Ensure that a valid index is found
top_documents.append(document_texts[idx])
else:
print(f"Invalid index found: {idx}")
return top_documents
except Exception as e:
print(f"Error querying text: {e}")
return f"Error querying text: {e}"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Document Upload and Query System")
with gr.Tab("Upload Files"):
upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
upload_button = gr.Button("Upload")
upload_output = gr.Textbox()
upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output)
with gr.Tab("Query"):
query = gr.Textbox(label="Enter your query")
query_button = gr.Button("Search")
query_output = gr.Textbox()
query_button.click(fn=query_text, inputs=query, outputs=query_output)
demo.launch()
|