File size: 6,562 Bytes
1649416
90bf4dc
 
 
 
 
 
 
 
 
 
eda6735
90bf4dc
 
 
 
 
 
 
 
 
 
 
d382509
90bf4dc
 
 
 
 
 
 
 
 
d382509
90bf4dc
 
2c02a9e
90bf4dc
 
 
 
eda6735
90bf4dc
 
 
 
 
eda6735
90bf4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda6735
90bf4dc
 
 
 
 
 
 
 
 
 
eda6735
 
 
90bf4dc
 
 
eda6735
90bf4dc
 
 
1649416
90bf4dc
 
 
1649416
90bf4dc
 
 
 
 
 
 
 
 
 
1649416
90bf4dc
 
1649416
90bf4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda6735
90bf4dc
eda6735
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import fitz
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
import gradio as gr
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
    text = ""
    try:
        doc = fitz.open(pdf_path)
        for page_num in range(len(doc)):
            page = doc.load_page(page_num)
            text += page.get_text()
    except Exception as e:
        print(f"Error extracting text from PDF: {e}")
    return text

# Function to extract text from a Word document
def extract_text_from_docx(docx_path):
    text = ""
    try:
        doc = Document(docx_path)
        text = "\n".join([para.text for para in doc.paragraphs])
    except Exception as e:
        print(f"Error extracting text from DOCX: {e}")
    return text

# Initialize the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Hugging Face API token
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
    raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set or invalid")

# Initialize the HuggingFace LLM
llm = HuggingFaceEndpoint(
    endpoint_url="https://api-inference.huggingface.co/models/gpt2",  # Using gpt2 model
    model_kwargs={"api_key": api_token}
)

# Initialize the HuggingFace embeddings
embedding = HuggingFaceEmbeddings()

# Load or create FAISS index
index_path = "faiss_index.pkl"
document_texts_path = "document_texts.pkl"

document_texts = []

if os.path.exists(index_path) and os.path.exists(document_texts_path):
    try:
        with open(index_path, "rb") as f:
            index = pickle.load(f)
            print("Loaded FAISS index from faiss_index.pkl")
        with open(document_texts_path, "rb") as f:
            document_texts = pickle.load(f)
            print("Loaded document texts from document_texts.pkl")
    except Exception as e:
        print(f"Error loading FAISS index or document texts: {e}")
else:
    # Create a new FAISS index if it doesn't exist
    index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
    with open(index_path, "wb") as f:
        pickle.dump(index, f)
        print("Created new FAISS index and saved to faiss_index.pkl")

def preprocess_text(text):
    # Add more preprocessing steps if necessary
    return text.strip()

def upload_files(files):
    global index, document_texts
    try:
        for file in files:
            file_path = file.name  # Get the file path from the NamedString object
            if file_path.endswith('.pdf'):
                text = extract_text_from_pdf(file_path)
            elif file_path.endswith('.docx'):
                text = extract_text_from_docx(file_path)
            else:
                return "Unsupported file format"

            print(f"Extracted text: {text[:100]}...")  # Debug: Show the first 100 characters of the extracted text

            # Process the text and update FAISS index
            sentences = text.split("\n")
            sentences = [preprocess_text(sentence) for sentence in sentences if sentence.strip()]
            embeddings = embedding_model.encode(sentences)
            print(f"Embeddings shape: {embeddings.shape}")  # Debug: Show the shape of the embeddings
            index.add(np.array(embeddings))
            document_texts.extend(sentences)  # Store sentences for retrieval

        # Save the updated index and documents
        with open(index_path, "wb") as f:
            pickle.dump(index, f)
            print("Saved updated FAISS index to faiss_index.pkl")
        with open(document_texts_path, "wb") as f:
            pickle.dump(document_texts, f)
            print("Saved updated document texts to document_texts.pkl")
        
        return "Files processed successfully"
    except Exception as e:
        print(f"Error processing files: {e}")
        return f"Error processing files: {e}"

# Improved prompt template
prompt_template = """
You are a helpful assistant. Use the provided context to answer the question accurately. 
If the answer is not in the context, say "answer is not available in the context". 
Do not provide false information.

Context:
{context}

Question:
{question}

Answer:
"""

def query_text(text):
    try:
        print(f"Query text: {text}")  # Debug: Show the query text

        # Encode the query text
        query_embedding = embedding_model.encode([text])
        print(f"Query embedding shape: {query_embedding.shape}")  # Debug: Show the shape of the query embedding
        
        # Search the FAISS index
        D, I = index.search(np.array(query_embedding), k=5)
        print(f"Distances: {D}, Indices: {I}")  # Debug: Show the distances and indices of the search results
        
        top_documents = []
  for idx in I[0]:
    if idx != -1 and idx < len(document_texts):
      # Get a passage around the retrieved sentence (e.g., paragraph)
      passage_start = max(0, idx - 5)  # Adjust window size as needed
      passage_end = min(len(document_texts), idx + 5)
      passage = "\n".join(document_texts[passage_start:passage_end])
      top_documents.append(passage)
    else:
      print(f"Invalid index found: {idx}")
        
        # Remove duplicates and sort by relevance
        top_documents = list(dict.fromkeys(top_documents))
        
        # Join the top documents for the context
        context = "\n".join(top_documents)

        # Prepare the prompt
        prompt = prompt_template.format(context=context, question=text)
        
        # Query the LLM
        response = llm(prompt)
        return response
    except Exception as e:
        print(f"Error querying text: {e}")
        return f"Error querying text: {e}"

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Document Upload and Query System")
    
    with gr.Tab("Upload Files"):
        upload = gr.File(file_count="multiple", label="Upload PDF or DOCX files")
        upload_button = gr.Button("Upload")
        upload_output = gr.Textbox()
        upload_button.click(fn=upload_files, inputs=upload, outputs=upload_output)
    
    with gr.Tab("Query"):
        query = gr.Textbox(label="Enter your query")
        query_button = gr.Button("Search")
        query_output = gr.Textbox()
        query_button.click(fn=query_text, inputs=query, outputs=query_output)

demo.launch()