Spaces:
Build error
Build error
import os | |
import fitz | |
from docx import Document | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import pickle | |
import gradio as gr | |
from typing import List | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from nltk.tokenize import sent_tokenize # Import for sentence segmentation | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Function to extract text from a PDF file | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
try: | |
doc = fitz.open(pdf_path) | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text += page.get_text() | |
except Exception as e: | |
print(f"Error extracting text from PDF: {e}") | |
return text | |
# Function to extract text from a Word document | |
def extract_text_from_docx(docx_path): | |
"""Extracts text from a Word document.""" | |
text = "" | |
try: | |
doc = Document(docx_path) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
except Exception as e: | |
print(f"Error extracting text from DOCX: {e}") | |
return text | |
# Initialize the embedding model (same as before) | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Hugging Face API token (same as before) | |
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
if not api_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set") | |
# Define RAG models (replace with your chosen models) | |
generator_model_name = "facebook/bart-base" | |
retriever_model_name = "facebook/bart-base" # Can be the same as generator | |
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name) | |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name) | |
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name) | |
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name) | |
# Load or create FAISS index | |
index_path = "faiss_index.pkl" | |
document_texts_path = "document_texts.pkl" | |
document_texts = [] | |
if os.path.exists(index_path) and os.path.exists(document_texts_path): | |
try: | |
with open(index_path, "rb") as f: | |
index = pickle.load(f) | |
print("Loaded FAISS index from faiss_index.pkl") | |
with open(document_texts_path, "rb") as f: | |
document_texts = pickle.load(f) | |
print("Loaded document texts from document_texts.pkl") | |
except Exception as e: | |
print(f"Error loading FAISS index or document texts: {e}") | |
else: | |
# Create a new FAISS index if it doesn't exist | |
index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension()) | |
with open(index_path, "wb") as f: | |
pickle.dump(index, f) | |
print("Created new FAISS index and saved to faiss_index.pkl") | |
def preprocess_text(text): | |
sentences = sent_tokenize(text) | |
return sentences | |
def upload_files(files): | |
global index, document_texts | |
try: | |
for file_path in files: | |
if file_path.endswith('.pdf'): | |
text = extract_text_from_pdf(file_path) | |
elif file_path.endswith('.docx'): | |
text = extract_text_from_docx(file_path) | |
else: | |
return "Unsupported file format" | |
# Preprocess text (call the new function) | |
sentences = preprocess_text(text) | |
# Encode sentences and add to FAISS index | |
embeddings = embedding_model.encode(sentences) | |
index.add(np.array(embeddings)) | |
# Save the updated index and documents (same as before) | |
# ... | |
return "Files processed successfully" | |
except Exception as e: | |
print(f"Error processing files: {e}") | |