File size: 3,802 Bytes
409f81b
2c02a9e
409f81b
 
 
 
 
84f3457
8ceb607
47ecda0
 
 
f812db9
 
2c02a9e
0632240
2c02a9e
0632240
 
 
 
 
 
 
 
 
2c02a9e
0632240
2c02a9e
f7133fb
 
 
 
 
 
 
 
 
409f81b
f812db9
409f81b
 
f812db9
 
409f81b
 
 
2c02a9e
47ecda0
f812db9
 
 
409f81b
f812db9
 
 
 
 
 
 
4d0c42b
409f81b
261cad3
ba470cd
4d0c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f812db9
 
 
4d0c42b
 
ba470cd
409f81b
2c02a9e
8ceb607
6e6d28c
70fd172
f7133fb
 
 
 
 
 
f812db9
 
 
 
 
ba470cd
 
f812db9
fa02121
8ab4823
6e6d28c
ba470cd
8ab4823
f812db9
 
2c02a9e
261cad3
ba470cd
6e6d28c
70fd172
fa02121
3f3bafc
47ecda0
 
 
0385c04
 
84f3457
 
 
409f81b
d7100c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import fitz
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
import gradio as gr
from typing import List
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from nltk.tokenize import sent_tokenize  # Import for sentence segmentation
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
    text = ""
    try:
        doc = fitz.open(pdf_path)
        for page_num in range(len(doc)):
            page = doc.load_page(page_num)
            text += page.get_text()
    except Exception as e:
        print(f"Error extracting text from PDF: {e}")
    return text

# Function to extract text from a Word document 
def extract_text_from_docx(docx_path):
    """Extracts text from a Word document."""
    text = ""
    try:
        doc = Document(docx_path)
        text = "\n".join([para.text for para in doc.paragraphs])
    except Exception as e:
        print(f"Error extracting text from DOCX: {e}")
    return text


# Initialize the embedding model (same as before)
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')


# Hugging Face API token (same as before)
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
    raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")


# Define RAG models (replace with your chosen models)
generator_model_name = "facebook/bart-base"
retriever_model_name = "facebook/bart-base"  # Can be the same as generator

generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)

retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)


# Load or create FAISS index
index_path = "faiss_index.pkl"
document_texts_path = "document_texts.pkl"
document_texts = []
if os.path.exists(index_path) and os.path.exists(document_texts_path):
    try:
        with open(index_path, "rb") as f:
            index = pickle.load(f)
            print("Loaded FAISS index from faiss_index.pkl")
        with open(document_texts_path, "rb") as f:
            document_texts = pickle.load(f)
            print("Loaded document texts from document_texts.pkl")
    except Exception as e:
        print(f"Error loading FAISS index or document texts: {e}")
else:
    # Create a new FAISS index if it doesn't exist
    index = faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension())
    with open(index_path, "wb") as f:
        pickle.dump(index, f)
        print("Created new FAISS index and saved to faiss_index.pkl")


def preprocess_text(text):
    sentences = sent_tokenize(text)
    return sentences


def upload_files(files):
    global index, document_texts
    try:
        for file_path in files:
            if file_path.endswith('.pdf'):
                text = extract_text_from_pdf(file_path)
            elif file_path.endswith('.docx'):
                text = extract_text_from_docx(file_path)
            else:
                return "Unsupported file format"

            # Preprocess text (call the new function)
            sentences = preprocess_text(text)

            # Encode sentences and add to FAISS index
            embeddings = embedding_model.encode(sentences)
            index.add(np.array(embeddings))

        # Save the updated index and documents (same as before)
        # ...
        return "Files processed successfully"
    except Exception as e:
        print(f"Error processing files: {e}")