Chatbot / app.py
NaimaAqeel's picture
Update app.py
f812db9 verified
raw
history blame
3.8 kB
import os
import fitz
from docx import Document
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pickle
import gradio as gr
from typing import List
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from nltk.tokenize import sent_tokenize # Import for sentence segmentation
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Function to extract text from a PDF file (same as before)
def extract_text_from_pdf(pdf_path):
# ...
# Function to extract text from a Word document (same as before)
def extract_text_from_docx(docx_path):
# ...
# Initialize the embedding model (same as before)
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Hugging Face API token (same as before)
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
if not api_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
# Define RAG models (replace with your chosen models)
generator_model_name = "facebook/bart-base"
retriever_model_name = "facebook/bart-base" # Can be the same as generator
generator = AutoModelForSeq2SeqLM.from_pretrained(generator_model_name)
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model_name)
retriever = AutoModelForSeq2SeqLM.from_pretrained(retriever_model_name)
retriever_tokenizer = AutoTokenizer.from_pretrained(retriever_model_name)
# Load or create FAISS index (same as before)
index_path = "faiss_index.pkl"
document_texts_path = "document_texts.pkl"
document_texts = []
# ... (rest of the FAISS index loading logic)
def preprocess_text(text):
# ... (text preprocessing logic, same as before)
def upload_files(files):
global index, document_texts
try:
for file_path in files:
# ... (file processing logic, same as before)
# Preprocess text (call the new function)
sentences = preprocess_text(text)
# Encode sentences and add to FAISS index
embeddings = embedding_model.encode(sentences)
index.add(np.array(embeddings))
# Save the updated index and documents (same as before)
# ...
return "Files processed successfully"
except Exception as e:
print(f"Error processing files: {e}")
return f"Error processing files: {e}"
def query_text(text):
try:
# Preprocess query text
query_sentences = preprocess_text(text)
query_embeddings = embedding_model.encode(query_sentences)
# Retrieve relevant documents using FAISS
D, I = index.search(np.array(query_embeddings), k=5)
retrieved_docs = [document_texts[idx] for idx in I[0] if idx != -1]
# Retriever-Augmented Generation (RAG)
retriever_inputs = retriever_tokenizer(
text=retrieved_docs, return_tensors="pt", padding=True
)
retriever_outputs = retriever(**retriever_inputs)
retrieved_texts = retriever_tokenizer.batch_decode(retriever_outputs.logits)
# Generate response using retrieved information (as prompts/context)
generator_inputs = generator_tokenizer(
text=[text] + retrieved_texts, return_tensors="pt", padding=True
)
generator_outputs = generator(**generator_inputs)
response = generator_tokenizer.decode(generator_outputs.sequences[0], skip_special_tokens=True)
return response
except Exception as e:
print(f"Error querying text: {e}")
return f"Error querying text: {e}"
# Create Gradio interface
with gr.Blocks() as demo:
# ... (rest of the Gradio interface definition)
query_button.click(fn=query_text, inputs