Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,164 +1,65 @@
|
|
1 |
-
import os
|
2 |
-
import pickle
|
3 |
-
import numpy as np
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
if isinstance(texts, str):
|
20 |
-
texts = [texts]
|
21 |
-
prefix = "query: " if is_query else "passage: "
|
22 |
-
texts = [prefix + t for t in texts]
|
23 |
-
|
24 |
-
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
25 |
-
with torch.no_grad():
|
26 |
-
model_output = embedding_model(**inputs)
|
27 |
-
|
28 |
-
embeddings = model_output.last_hidden_state[:, 0] # CLS token
|
29 |
-
return embeddings.cpu().numpy()
|
30 |
-
|
31 |
-
|
32 |
-
# ===============================
|
33 |
-
# TEXT CHUNKING
|
34 |
-
# ===============================
|
35 |
-
def chunk_text(text, chunk_size=800, overlap=100):
|
36 |
-
chunks = []
|
37 |
-
start = 0
|
38 |
-
while start < len(text):
|
39 |
-
end = min(len(text), start + chunk_size)
|
40 |
-
chunks.append(text[start:end])
|
41 |
-
start += chunk_size - overlap
|
42 |
-
return chunks
|
43 |
-
|
44 |
-
# ===============================
|
45 |
-
# FAISS INDEX SETUP
|
46 |
-
# ===============================
|
47 |
-
index_path = "faiss_index.pkl"
|
48 |
-
document_texts_path = "document_texts.pkl"
|
49 |
-
document_texts = []
|
50 |
-
embedding_dim = 384
|
51 |
-
|
52 |
-
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
53 |
-
try:
|
54 |
-
with open(index_path, "rb") as f:
|
55 |
-
index = pickle.load(f)
|
56 |
-
with open(document_texts_path, "rb") as f:
|
57 |
-
document_texts = pickle.load(f)
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error loading index: {e}")
|
60 |
-
index = faiss.IndexFlatIP(embedding_dim)
|
61 |
-
else:
|
62 |
-
index = faiss.IndexFlatIP(embedding_dim)
|
63 |
-
|
64 |
-
# ===============================
|
65 |
-
# FILE EXTRACTORS
|
66 |
-
# ===============================
|
67 |
-
def extract_text_from_pdf(path):
|
68 |
-
text = ""
|
69 |
-
try:
|
70 |
-
doc = fitz.open(path)
|
71 |
-
for page in doc:
|
72 |
-
text += page.get_text()
|
73 |
-
except Exception as e:
|
74 |
-
print(f"PDF error: {e}")
|
75 |
return text
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
-
|
81 |
-
|
82 |
except Exception as e:
|
83 |
-
|
84 |
-
return text
|
85 |
-
|
86 |
-
# ===============================
|
87 |
-
# UPLOAD HANDLER
|
88 |
-
# ===============================
|
89 |
-
def upload_document(file):
|
90 |
-
ext = os.path.splitext(file.name)[-1].lower()
|
91 |
-
if ext == ".pdf":
|
92 |
-
text = extract_text_from_pdf(file.name)
|
93 |
-
elif ext == ".docx":
|
94 |
-
text = extract_text_from_docx(file.name)
|
95 |
-
else:
|
96 |
-
return "Unsupported file type."
|
97 |
-
|
98 |
-
chunks = chunk_text(text)
|
99 |
-
chunk_embeddings = get_embeddings(chunks)
|
100 |
-
index.add(np.array(chunk_embeddings).astype('float32'))
|
101 |
-
document_texts.extend(chunks)
|
102 |
-
|
103 |
-
with open(index_path, "wb") as f:
|
104 |
-
pickle.dump(index, f)
|
105 |
-
with open(document_texts_path, "wb") as f:
|
106 |
-
pickle.dump(document_texts, f)
|
107 |
-
|
108 |
-
return "Document uploaded and indexed successfully."
|
109 |
-
|
110 |
-
|
111 |
-
# ===============================
|
112 |
-
# QA GENERATION PIPELINE
|
113 |
-
# ===============================
|
114 |
-
# Initialize text generation pipeline (you can use a more powerful model if needed)
|
115 |
-
qa_pipeline = pipeline("text-generation", model="gpt2")
|
116 |
-
|
117 |
-
def generate_answer_from_file(query, top_k=10):
|
118 |
-
if not document_texts:
|
119 |
-
return "No documents indexed yet."
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
"Based on the context provided, answer the question accurately and clearly.\n\n"
|
130 |
-
"### Example\n"
|
131 |
-
"Context:\nArtificial systems are created by people. These systems are designed to perform specific tasks, improve efficiency, and solve problems. Examples include knowledge systems, engineering systems, and social systems.\n\n"
|
132 |
-
"Question: What is an Artificial System?\n"
|
133 |
-
"Answer: Artificial systems are systems created by humans to perform specific tasks, improve efficiency, and solve problems. They include systems like knowledge systems, engineering systems, and social systems.\n\n"
|
134 |
-
"### Now answer this\n"
|
135 |
-
f"Context:\n{context}\n\n"
|
136 |
-
f"Question: {query}\n"
|
137 |
-
f"Answer:"
|
138 |
-
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
# ===============================
|
147 |
-
upload_interface = gr.Interface(
|
148 |
-
fn=upload_document,
|
149 |
-
inputs=gr.File(file_types=[".pdf", ".docx"]),
|
150 |
-
outputs="text",
|
151 |
-
title="Upload Document",
|
152 |
-
description="Upload your Word or PDF document for question answering."
|
153 |
-
)
|
154 |
|
155 |
-
|
156 |
-
fn=generate_answer_from_file,
|
157 |
-
inputs=gr.Textbox(placeholder="Ask your question about the uploaded document..."),
|
158 |
-
outputs="text",
|
159 |
-
title="Ask the Document",
|
160 |
-
description="Ask questions about the uploaded content. The chatbot will answer based on the document."
|
161 |
-
)
|
162 |
|
163 |
-
app = gr.TabbedInterface([upload_interface, search_interface], ["Upload", "Ask"])
|
164 |
-
app.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Load QA pipeline
|
6 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
7 |
+
|
8 |
+
# Function to extract text from PDF
|
9 |
+
def extract_text_from_pdf(file):
|
10 |
+
reader = PdfReader(file)
|
11 |
+
text = ''
|
12 |
+
for page in reader.pages:
|
13 |
+
content = page.extract_text()
|
14 |
+
if content:
|
15 |
+
text += content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
return text
|
17 |
|
18 |
+
# Store context globally
|
19 |
+
document_context = {"text": ""}
|
20 |
+
|
21 |
+
# Function to set context from PDF or text
|
22 |
+
def set_context(pdf_file, text_input):
|
23 |
+
if pdf_file:
|
24 |
+
extracted = extract_text_from_pdf(pdf_file)
|
25 |
+
document_context["text"] = extracted
|
26 |
+
return "PDF uploaded and processed successfully!"
|
27 |
+
elif text_input.strip():
|
28 |
+
document_context["text"] = text_input.strip()
|
29 |
+
return "Text received and stored successfully!"
|
30 |
+
else:
|
31 |
+
return "Please upload a PDF or provide some text."
|
32 |
+
|
33 |
+
# Function to answer questions based on stored context
|
34 |
+
def answer_question(question):
|
35 |
+
context = document_context["text"]
|
36 |
+
if not context:
|
37 |
+
return "Please upload a document or enter some text first."
|
38 |
+
if not question.strip():
|
39 |
+
return "Please enter a question."
|
40 |
try:
|
41 |
+
result = qa_pipeline(question=question, context=context)
|
42 |
+
return result["answer"]
|
43 |
except Exception as e:
|
44 |
+
return f"Error during QA: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Gradio Interface
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
gr.Markdown("# 📄 Ask Questions from a Document")
|
49 |
+
gr.Markdown("Upload a PDF or paste some text, then ask questions about it!")
|
50 |
|
51 |
+
with gr.Row():
|
52 |
+
pdf_input = gr.File(label="Upload PDF (optional)", type="binary")
|
53 |
+
text_input = gr.Textbox(label="Or paste text here", lines=8, placeholder="Paste your document text...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
upload_btn = gr.Button("Submit Document")
|
56 |
+
upload_output = gr.Textbox(label="Status", interactive=False)
|
57 |
|
58 |
+
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
|
59 |
+
answer_output = gr.Textbox(label="Answer", interactive=False)
|
60 |
|
61 |
+
upload_btn.click(set_context, inputs=[pdf_input, text_input], outputs=upload_output)
|
62 |
+
question_input.change(answer_question, inputs=question_input, outputs=answer_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
|
|
|