Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import faiss
|
|
9 |
import torch
|
10 |
|
11 |
# ===============================
|
12 |
-
# EMBEDDING MODEL
|
13 |
# ===============================
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -21,15 +21,12 @@ def get_embeddings(texts):
|
|
21 |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
22 |
with torch.no_grad():
|
23 |
outputs = embedding_model(**inputs)
|
24 |
-
|
25 |
-
# Normalize embeddings to unit length for cosine similarity
|
26 |
-
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
27 |
-
return embeddings
|
28 |
|
29 |
# ===============================
|
30 |
# TEXT CHUNKING
|
31 |
# ===============================
|
32 |
-
def chunk_text(text, chunk_size=
|
33 |
chunks = []
|
34 |
start = 0
|
35 |
while start < len(text):
|
@@ -44,7 +41,7 @@ def chunk_text(text, chunk_size=500, overlap=50):
|
|
44 |
index_path = "faiss_index.pkl"
|
45 |
document_texts_path = "document_texts.pkl"
|
46 |
document_texts = []
|
47 |
-
embedding_dim = 384
|
48 |
|
49 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
50 |
try:
|
@@ -109,7 +106,7 @@ def upload_document(file):
|
|
109 |
# ===============================
|
110 |
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
111 |
|
112 |
-
def generate_answer_from_file(query, top_k=
|
113 |
if not document_texts:
|
114 |
return "No documents indexed yet."
|
115 |
|
@@ -118,20 +115,23 @@ def generate_answer_from_file(query, top_k=7):
|
|
118 |
retrieved_chunks = [document_texts[i] for i in indices[0]]
|
119 |
context = "\n\n".join(retrieved_chunks)
|
120 |
|
|
|
|
|
|
|
121 |
prompt = (
|
122 |
-
"You are a helpful
|
123 |
-
"Based on the context provided, answer the question accurately and
|
124 |
"### Example\n"
|
125 |
"Context:\nArtificial systems are created by people. These systems are designed to perform specific tasks, improve efficiency, and solve problems. Examples include knowledge systems, engineering systems, and social systems.\n\n"
|
126 |
"Question: What is an Artificial System?\n"
|
127 |
-
"Answer: Artificial systems are systems created by humans to perform specific tasks, improve efficiency, and solve problems. They include systems
|
128 |
"### Now answer this\n"
|
129 |
f"Context:\n{context}\n\n"
|
130 |
f"Question: {query}\n"
|
131 |
-
"Answer
|
132 |
)
|
133 |
|
134 |
-
result = qa_pipeline(prompt, max_length=
|
135 |
return result.strip()
|
136 |
|
137 |
# ===============================
|
@@ -156,3 +156,4 @@ search_interface = gr.Interface(
|
|
156 |
app = gr.TabbedInterface([upload_interface, search_interface], ["Upload", "Ask"])
|
157 |
app.launch()
|
158 |
|
|
|
|
9 |
import torch
|
10 |
|
11 |
# ===============================
|
12 |
+
# EMBEDDING MODEL
|
13 |
# ===============================
|
14 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
21 |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
22 |
with torch.no_grad():
|
23 |
outputs = embedding_model(**inputs)
|
24 |
+
return outputs.last_hidden_state[:, 0].cpu().numpy()
|
|
|
|
|
|
|
25 |
|
26 |
# ===============================
|
27 |
# TEXT CHUNKING
|
28 |
# ===============================
|
29 |
+
def chunk_text(text, chunk_size=800, overlap=100):
|
30 |
chunks = []
|
31 |
start = 0
|
32 |
while start < len(text):
|
|
|
41 |
index_path = "faiss_index.pkl"
|
42 |
document_texts_path = "document_texts.pkl"
|
43 |
document_texts = []
|
44 |
+
embedding_dim = 384
|
45 |
|
46 |
if os.path.exists(index_path) and os.path.exists(document_texts_path):
|
47 |
try:
|
|
|
106 |
# ===============================
|
107 |
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
108 |
|
109 |
+
def generate_answer_from_file(query, top_k=10):
|
110 |
if not document_texts:
|
111 |
return "No documents indexed yet."
|
112 |
|
|
|
115 |
retrieved_chunks = [document_texts[i] for i in indices[0]]
|
116 |
context = "\n\n".join(retrieved_chunks)
|
117 |
|
118 |
+
print("\n--- Retrieved Context ---\n", context) # Debugging print
|
119 |
+
|
120 |
+
# Prompt Engineering
|
121 |
prompt = (
|
122 |
+
"You are a helpful assistant reading student notes or textbook passages.\n\n"
|
123 |
+
"Based on the context provided, answer the question accurately and clearly.\n\n"
|
124 |
"### Example\n"
|
125 |
"Context:\nArtificial systems are created by people. These systems are designed to perform specific tasks, improve efficiency, and solve problems. Examples include knowledge systems, engineering systems, and social systems.\n\n"
|
126 |
"Question: What is an Artificial System?\n"
|
127 |
+
"Answer: Artificial systems are systems created by humans to perform specific tasks, improve efficiency, and solve problems. They include systems like knowledge systems, engineering systems, and social systems.\n\n"
|
128 |
"### Now answer this\n"
|
129 |
f"Context:\n{context}\n\n"
|
130 |
f"Question: {query}\n"
|
131 |
+
f"Answer:"
|
132 |
)
|
133 |
|
134 |
+
result = qa_pipeline(prompt, max_length=512, do_sample=False)[0]['generated_text']
|
135 |
return result.strip()
|
136 |
|
137 |
# ===============================
|
|
|
156 |
app = gr.TabbedInterface([upload_interface, search_interface], ["Upload", "Ask"])
|
157 |
app.launch()
|
158 |
|
159 |
+
|