Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
from skimage import io
|
|
|
4 |
from PIL import Image
|
5 |
|
6 |
def svd_compress(image_channel, k):
|
@@ -9,14 +10,21 @@ def svd_compress(image_channel, k):
|
|
9 |
compressed_channel = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :]))
|
10 |
return compressed_channel
|
11 |
|
|
|
|
|
|
|
|
|
12 |
def process_image(image, k):
|
13 |
"""Process the uploaded image, compress it using SVD for each color channel, and return the result."""
|
14 |
# Convert PIL Image to NumPy array
|
15 |
image_np = np.array(image)
|
16 |
|
|
|
|
|
|
|
17 |
# Separate the RGB channels
|
18 |
-
if len(
|
19 |
-
r_channel, g_channel, b_channel =
|
20 |
|
21 |
# Compress each channel using SVD
|
22 |
r_compressed = svd_compress(r_channel, k)
|
@@ -26,10 +34,10 @@ def process_image(image, k):
|
|
26 |
# Stack the compressed channels back together
|
27 |
compressed_image = np.stack([r_compressed, g_compressed, b_compressed], axis=2)
|
28 |
else: # Grayscale image
|
29 |
-
compressed_image = svd_compress(
|
30 |
|
31 |
# Clip the values to ensure valid pixel range and convert to PIL Image for output
|
32 |
-
compressed_image = np.clip(compressed_image, 0, 255)
|
33 |
compressed_image_pil = Image.fromarray(compressed_image.astype(np.uint8))
|
34 |
|
35 |
return compressed_image_pil
|
@@ -40,5 +48,4 @@ gr.Interface(fn=process_image,
|
|
40 |
gr.Slider(1, 100, step=1, value=50, label="Compression Rank")],
|
41 |
outputs=gr.Image(type="pil", label="Compressed Image"),
|
42 |
title="Color Image Compression using SVD",
|
43 |
-
description="Upload an image (color or grayscale) and adjust the compression rank
|
44 |
-
).launch()
|
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
from skimage import io
|
4 |
+
from skimage.transform import resize
|
5 |
from PIL import Image
|
6 |
|
7 |
def svd_compress(image_channel, k):
|
|
|
10 |
compressed_channel = np.dot(U[:, :k], np.dot(np.diag(S[:k]), Vt[:k, :]))
|
11 |
return compressed_channel
|
12 |
|
13 |
+
def resize_image(image_np, target_shape=(500, 500)):
|
14 |
+
"""Resize the image to reduce the computation time for SVD."""
|
15 |
+
return resize(image_np, target_shape, anti_aliasing=True)
|
16 |
+
|
17 |
def process_image(image, k):
|
18 |
"""Process the uploaded image, compress it using SVD for each color channel, and return the result."""
|
19 |
# Convert PIL Image to NumPy array
|
20 |
image_np = np.array(image)
|
21 |
|
22 |
+
# Resize the image to speed up SVD computation
|
23 |
+
image_np_resized = resize_image(image_np)
|
24 |
+
|
25 |
# Separate the RGB channels
|
26 |
+
if len(image_np_resized.shape) == 3: # Color image
|
27 |
+
r_channel, g_channel, b_channel = image_np_resized[:, :, 0], image_np_resized[:, :, 1], image_np_resized[:, :, 2]
|
28 |
|
29 |
# Compress each channel using SVD
|
30 |
r_compressed = svd_compress(r_channel, k)
|
|
|
34 |
# Stack the compressed channels back together
|
35 |
compressed_image = np.stack([r_compressed, g_compressed, b_compressed], axis=2)
|
36 |
else: # Grayscale image
|
37 |
+
compressed_image = svd_compress(image_np_resized, k)
|
38 |
|
39 |
# Clip the values to ensure valid pixel range and convert to PIL Image for output
|
40 |
+
compressed_image = np.clip(compressed_image * 255, 0, 255)
|
41 |
compressed_image_pil = Image.fromarray(compressed_image.astype(np.uint8))
|
42 |
|
43 |
return compressed_image_pil
|
|
|
48 |
gr.Slider(1, 100, step=1, value=50, label="Compression Rank")],
|
49 |
outputs=gr.Image(type="pil", label="Compressed Image"),
|
50 |
title="Color Image Compression using SVD",
|
51 |
+
description="Upload an image (color or grayscale), and adjust the compression rank.").launch()
|
|