File size: 3,686 Bytes
73c9569 8c7f62e b317f13 73c9569 ccf2ab1 b1318a8 ccf2ab1 03c0a2b 78eb20d ccf2ab1 f902b4a b1318a8 c3ecef9 73c9569 e9b987a ccf2ab1 56253bf 73c9569 ccf2ab1 73c9569 5347e77 56253bf 73c9569 5347e77 73c9569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
from datasets import load_dataset
dataset = load_dataset("Namitg02/Test")
print(dataset)
from langchain.docstore.document import Document as LangchainDocument
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
docs = splitter.create_documents(str(dataset))
from langchain_community.embeddings import HuggingFaceEmbeddings
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
from langchain_community.vectorstores import Chroma
persist_directory = 'docs/chroma/'
vectordb = Chroma.from_documents(
documents=docs,
embedding=embedding_model,
persist_directory=persist_directory
)
retriever = vectordb.as_retriever(
search_type="similarity", search_kwargs={"k": 2}
)
from langchain.prompts import PromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
from transformers import pipeline
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.messages import SystemMessage
from langchain_core.prompts import HumanMessagePromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
print("check1")
question = "How can I reverse Diabetes?"
#template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
#{context}
#Question: {question}
#Helpful Answer:"""
#QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
tokenizer = AutoTokenizer.from_pretrained(llm_model)
model = AutoModelForCausalLM.from_pretrained(llm_model)
pipe = pipeline(model = llm_model, tokenizer = tokenizer, task = "text-generation", temperature=0.5)
#question = "How can I reverse diabetes?"
#docs1 = retriever.invoke(question)
#docs1 = retriever.similarity_search(question)
#print(docs1[0].page_content)
import pandas as pd
#df = pd.DataFrame(docs1, columns=["text"])
#context = df.to_string()
#print(context)
#print(docs1)[0]['generated_text'][-1]
print("check2")
#question = "How can I reverse diabetes?"
print("result")
print("check3")
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who responds in the style of a doctor",
},
{"role": "user", "content": "How can I reverse diabetes?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
chain = pipe(prompt, max_new_tokens=256, do_sample=True)
print(chain[0]["generated_text"])
#chain = pipe(question = question,context = "Use the following information to answer the question. Diabetes can be cured by eating apples.")
#chain = pipe(question = question,context = "Use the following information to answer the question. {context}.")
#context = "Use the following information to answer the question. Diabetes can be cured by eating apples."
print("check3A")
#print(chain)[0]['generated_text'][-1]
print("check3B")
import gradio as gr
#ragdemo = gr.Interface.from_pipeline(chain)
interface = gr.Interface.from_pipeline(chain).launch(share=True)
print("check4")
#ragdemo.launch()
print("check5") |