Test / app.py
Namitg02's picture
Update app.py
222a334 verified
raw
history blame
5.06 kB
from datasets import load_dataset
dataset = load_dataset("Namitg02/Test")
print(dataset)
from langchain.docstore.document import Document as LangchainDocument
#RAW_KNOWLEDGE_BASE = [LangchainDocument(page_content=["dataset"])]
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
#docs = splitter.split_documents(RAW_KNOWLEDGE_BASE)
docs = splitter.create_documents(str(dataset))
from langchain_community.embeddings import HuggingFaceEmbeddings
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# embeddings = embedding_model.encode(docs)
from langchain_community.vectorstores import Chroma
persist_directory = 'docs/chroma/'
vectordb = Chroma.from_documents(
documents=docs,
embedding=embedding_model,
persist_directory=persist_directory
)
#docs_ss = vectordb.similarity_search(question,k=3)
# Create placeholders for the login form widgets using st.empty()
#user_input_placeholder = st.empty()
#pass_input_placeholder = st.empty()
#from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
from langchain.prompts import PromptTemplate
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
{You are a helpful dietician}
Question: {question}
Helpful Answer:"""
#QA_CHAIN_PROMPT = PromptTemplate.from_template(template)
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
question = "How can I reverse Diabetes?"
#print("template")
retriever = vectordb.as_retriever(
search_type="similarity", search_kwargs={"k": 2}
)
from transformers import pipeline
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.messages import SystemMessage
from langchain_core.prompts import HumanMessagePromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
print("check1")
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
#qa_chat_prompt = ChatPromptTemplate.from_messages(
#[
# SystemMessage(
# content=(
# "You are a Diabetes eductaor that provide advice to patients."
# )
# ),
# HumanMessagePromptTemplate.from_template("{context}"),
#]
#)
llm_model = "microsoft/Phi-3-mini-4k-instruct"
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(llm_model,trust_remote_code=True)
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(llm_model,trust_remote_code=True)
#llm = HuggingFaceLLM(
# tokenizer_name="microsoft/Phi-3-mini-4k-instruct",
# model_name="microsoft/Phi-3-mini-4k-instruct",
#)
question = "How can I reverse diabetes?"
#pipe = pipeline(model = llm_model, tokenizer = tokenizer, task = "text-generation", temperature=0.2)
docs1 = retriever.get_relevant_documents(question)
print("docs1")
from langchain.chains.question_answering import load_qa_chain
#pipe = load_qa_chain(llm=llm_model,tokenizer =tokenizer, chain_type="map_reduce")
print("check2")
qa = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}
)
#question = "How can I reverse diabetes?"
result = qa({"question": question})
print("result")
#result['answer']
#"question-answering", "conversational"
print("check3")
chain = pipe(question = "How can I reverse diabetes?",context = "Diabetes remission or reversal is a condition when a person’s HbA1c is less than 6.5% for 3 months or more without diabetes medication. For diabetes remission or reversal, people should follow the advice of their doctors and nutritionist. Weight reduction is the key point for diabetes remission or reversal, as we all know that one of the leading causes of developing diabetes is obesity and more than 82 percent are overweight. But remission does not mean that diabetes has gone away.")
#(question = question, context = context)
print("check3A")
print(chain)[0]['generated_text'][-1]
print("check3B")
import gradio as gr
#ragdemo = gr.load("models/HuggingFaceH4/zephyr-7b-beta")
ragdemo = gr.Interface.from_pipeline(chain)
print("check4")
ragdemo.launch()
print("check5")