File size: 5,059 Bytes
341b0e8 db2d027 f437f2a 30b8a93 6bf42b4 30b8a93 f437f2a 6085a4e 6bf42b4 fe4f2dd f437f2a 1d55d4a 73e234f 51c6493 f437f2a eb40503 f437f2a 30b8a93 f437f2a 6bf42b4 51c6493 f437f2a 1e0339f 0dab96e 1e0339f f40cccc 57eb6aa f40cccc 57eb6aa f40cccc 0dab96e f40cccc 57eb6aa 1e0339f 0dab96e 50f7573 1e0339f 0dab96e f40cccc 1e0339f e69e635 48a5b37 c0b0ef7 57eb6aa 5f04ae4 11a5cb0 57eb6aa 11a5cb0 0bf4653 1b3dd55 08f351d a58bb60 08f351d 222a334 a58bb60 aff4a30 23f23be 6484e7f aff4a30 7c866d5 a58bb60 5f04ae4 57eb6aa 939411c 57eb6aa aff4a30 57eb6aa 1b3dd55 5f04ae4 087cd96 3318ce2 b374ad5 46451bb d34b70c 4445973 fe83899 b374ad5 d34b70c 5f04ae4 69b416b 5f04ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
from datasets import load_dataset
dataset = load_dataset("Namitg02/Test")
print(dataset)
from langchain.docstore.document import Document as LangchainDocument
#RAW_KNOWLEDGE_BASE = [LangchainDocument(page_content=["dataset"])]
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""])
#docs = splitter.split_documents(RAW_KNOWLEDGE_BASE)
docs = splitter.create_documents(str(dataset))
from langchain_community.embeddings import HuggingFaceEmbeddings
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# embeddings = embedding_model.encode(docs)
from langchain_community.vectorstores import Chroma
persist_directory = 'docs/chroma/'
vectordb = Chroma.from_documents(
documents=docs,
embedding=embedding_model,
persist_directory=persist_directory
)
#docs_ss = vectordb.similarity_search(question,k=3)
# Create placeholders for the login form widgets using st.empty()
#user_input_placeholder = st.empty()
#pass_input_placeholder = st.empty()
#from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
from langchain.prompts import PromptTemplate
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
{You are a helpful dietician}
Question: {question}
Helpful Answer:"""
#QA_CHAIN_PROMPT = PromptTemplate.from_template(template)
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
question = "How can I reverse Diabetes?"
#print("template")
retriever = vectordb.as_retriever(
search_type="similarity", search_kwargs={"k": 2}
)
from transformers import pipeline
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.messages import SystemMessage
from langchain_core.prompts import HumanMessagePromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
print("check1")
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
#qa_chat_prompt = ChatPromptTemplate.from_messages(
#[
# SystemMessage(
# content=(
# "You are a Diabetes eductaor that provide advice to patients."
# )
# ),
# HumanMessagePromptTemplate.from_template("{context}"),
#]
#)
llm_model = "microsoft/Phi-3-mini-4k-instruct"
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(llm_model,trust_remote_code=True)
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(llm_model,trust_remote_code=True)
#llm = HuggingFaceLLM(
# tokenizer_name="microsoft/Phi-3-mini-4k-instruct",
# model_name="microsoft/Phi-3-mini-4k-instruct",
#)
question = "How can I reverse diabetes?"
#pipe = pipeline(model = llm_model, tokenizer = tokenizer, task = "text-generation", temperature=0.2)
docs1 = retriever.get_relevant_documents(question)
print("docs1")
from langchain.chains.question_answering import load_qa_chain
#pipe = load_qa_chain(llm=llm_model,tokenizer =tokenizer, chain_type="map_reduce")
print("check2")
qa = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}
)
#question = "How can I reverse diabetes?"
result = qa({"question": question})
print("result")
#result['answer']
#"question-answering", "conversational"
print("check3")
chain = pipe(question = "How can I reverse diabetes?",context = "Diabetes remission or reversal is a condition when a person’s HbA1c is less than 6.5% for 3 months or more without diabetes medication. For diabetes remission or reversal, people should follow the advice of their doctors and nutritionist. Weight reduction is the key point for diabetes remission or reversal, as we all know that one of the leading causes of developing diabetes is obesity and more than 82 percent are overweight. But remission does not mean that diabetes has gone away.")
#(question = question, context = context)
print("check3A")
print(chain)[0]['generated_text'][-1]
print("check3B")
import gradio as gr
#ragdemo = gr.load("models/HuggingFaceH4/zephyr-7b-beta")
ragdemo = gr.Interface.from_pipeline(chain)
print("check4")
ragdemo.launch()
print("check5") |