File size: 5,738 Bytes
9154a27
 
 
 
 
b56bc50
 
9154a27
 
 
 
ef851dc
 
b56bc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef851dc
9154a27
 
 
ef851dc
9154a27
03b5d15
9154a27
 
 
ef851dc
a763ea9
 
 
cd480d9
a763ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b56bc50
 
ef851dc
375f1b4
b56bc50
9154a27
b56bc50
35c2262
9154a27
33379dc
b56bc50
ef851dc
a763ea9
 
b56bc50
 
8cb7756
9f2b6d8
b56bc50
 
 
33379dc
9154a27
 
 
 
 
33379dc
ef851dc
33379dc
137b57c
ef851dc
 
 
 
 
137b57c
ef851dc
efa9908
137b57c
 
 
 
c32777e
22e36cf
ef851dc
22e36cf
 
 
 
 
 
 
 
 
 
 
c32777e
22e36cf
 
9154a27
 
ef851dc
316c194
 
fecaffd
ef851dc
9154a27
ad32c72
f1f699f
ac5e6c0
f1f699f
ac5e6c0
a763ea9
f1f699f
ac5e6c0
a763ea9
f1f699f
ac5e6c0
a763ea9
 
ad32c72
 
 
 
f1f699f
a763ea9
 
f1f699f
a763ea9
 
f1f699f
a763ea9
 
ad32c72
 
9154a27
ef851dc
9154a27
 
 
 
 
33379dc
c32777e
 
 
9154a27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import numpy as np
from PIL import Image
import requests
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

import hopsworks
import joblib

# Convert the input to the format the model expects


def prepare_for_write(df):
    # Convert the categorical features to numerical
    def sexToInt(x):
        if x == "male":
            return 0
        elif x == "female":
            return 1
        else:
            raise Exception("Unsupported sex value: " + x)

    def embarkedToInt(x):
        if x == "S":
            return 0
        elif x == "C":
            return 1
        elif x == "Q":
            return 2
        else:
            raise Exception("Unsupported embarked value: " + x)

    df["Sex"] = df["Sex"].apply(sexToInt)
    df["Embarked"] = df["Embarked"].apply(embarkedToInt)
    # le = preprocessing.LabelEncoder()
    # df = df.apply(le.fit_transform)
    df.columns = df.columns.str.lower()
    return df


# Login to hopsworks and get the feature store
project = hopsworks.login()
fs = project.get_feature_store()

# Get the model from Hopsworks
mr = project.get_model_registry()
model = mr.get_model("titanic_modal", version=10)
model_dir = model.download()
model = joblib.load(model_dir + "/titanic_model.pkl")

# For generating the input form
catToInput = {
    "Sex": ["male", "female"],
    "Embarked": ["Southampton", "Cherbourg", "Queenstown"],
    "Pclass": ["First", "Second", "Third"]
}

cityToInput = {
    "Southampton": "S",
    "Cherbourg": "C",
    "Queenstown": "Q"
}

classToInput = {
    "First": 1,
    "Second": 2,
    "Third": 3
}


inputs = []
numericalInputs = ["Age", "SibSp", "Parch", "Fare"]
# Maybe move cabin to categorical (or just remove it)
worthlessInputs = ["Name", "Ticket", "Cabin", "Title"]
categoricalInputs = ["Sex", "Embarked", "Pclass"]

columnHeaders = ["Pclass", "Sex", "Age", "SibSp",
                 "Parch", "Fare", "Embarked"]


def titanic(Pclass, Sex, Age, SibSp, Parch, Fare, Embarked):
    # Parse the unput and save it so we can run it through the model
    Embarked = cityToInput[Embarked]
    Pclass = classToInput[Pclass]
    # Create a dataframe from the input values
    input_variables = pd.DataFrame(
        [[Pclass, Sex, Age, SibSp, Parch, Fare, Embarked]], columns=columnHeaders)
    df = prepare_for_write(input_variables)

    # Save first row as a numpy array
    input_list = df.iloc[0].to_numpy()

    # 'res' is a list of predictions returned as the label.
    res = model.predict(np.asarray(input_list).reshape(1, -1))

    # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
    # the first element.

    intLabelToText = {0: "Died", 1: "Survived"}  # Debug

    survived = res[0]
    # The API we are using only supports this age range
    if Age < 9:
        Age = 9
    if Age > 75:
        Age = 75

    # Generate a face of the inputted person
    generate_survivor_url = f'https://fakeface.rest/face/json?maximum_age={int(Age)}&gender={Sex}&minimum_age={int(Age)}'
    randomized_face_url = requests.get(
        generate_survivor_url).json()["image_url"]

    survivor_url = randomized_face_url
    img = Image.open(requests.get(survivor_url, stream=True).raw)

    # Show a green check mark if the person is predicted to survive, otherwise show a red x
    red_cross_url = "https://www.iconsdb.com/icons/preview/red/x-mark-xxl.png"
    green_check_mark_url = "https://www.iconsdb.com/icons/preview/green/checkmark-xxl.png"

    label_to_url = {
        0: red_cross_url,
        1: green_check_mark_url
    }

    url = label_to_url.get(survived)

    # Save the image of the person
    img2 = Image.open(requests.get(url, stream=True).raw)

    return img, img2


# All features present in the titanic dataset
featureLabels = ["Pclass", "Name", "Sex", "Age", "SibSp",
                 "Parch", "Ticket", "Fare", "Cabin", "Embarked"]

# Generate the input form
for feature in featureLabels:
    if feature in numericalInputs:
        if feature == 'Age':
            inputs.append(gr.inputs.Slider(9, 75, 1, label='Age (years)'))
        elif feature == 'SibSp':
            inputs.append(gr.inputs.Slider(
                0, 10, 1, label='Number of siblings/spouses aboard'))
        elif feature == 'Parch':
            inputs.append(gr.inputs.Slider(
                0, 10, 1, label='Number of parents/children aboard'))
        elif feature == 'Fare':
            inputs.append(gr.inputs.Slider(0, 1000, 1, label='Ticket fare'))
        else:
            raise Exception(f'Feature: "{feature}" not found')
    elif feature in worthlessInputs:
        pass
        # inputs.append(gr.Inputs.Textbox(default='text', label=feature))
    elif feature in categoricalInputs:
        if feature == "Sex":
            inputs.append(gr.inputs.Dropdown(
                choices=catToInput.get(feature), default="male", label=feature))
        elif feature == "Embarked":
            inputs.append(gr.inputs.Dropdown(
                choices=catToInput.get(feature), default="Southampton", label='City of embarkation'))
        elif feature == "Pclass":
            inputs.append(gr.inputs.Dropdown(
                choices=catToInput.get(feature), default=3, label='Ticket class'))
    else:
        raise Exception(f'Feature: "{feature}" not found')

# Create the interface
demo = gr.Interface(
    fn=titanic,
    title="Titanic Survivor Predictive Analytics",
    description="Experiment with person features to predict which survivor it is.",
    allow_flagging="never",
    inputs=inputs,
    outputs=[gr.Image(type="pil").style(
        height='100', rounded=False), gr.Image(type="pil").style(
        height='100', rounded=False)])

demo.launch()