File size: 5,277 Bytes
72ac970
 
 
 
 
 
 
 
 
 
 
 
 
1f331a4
 
72ac970
 
 
65c885b
78003b9
 
 
 
72ac970
 
 
1f331a4
 
 
 
72ac970
 
 
 
1f331a4
 
 
72ac970
 
 
 
 
 
1f331a4
 
72ac970
1f331a4
72ac970
1f331a4
 
 
 
 
 
 
 
 
 
 
72ac970
1f331a4
72ac970
 
 
 
 
1f331a4
 
 
 
72ac970
 
 
 
 
 
 
 
 
78003b9
 
 
 
 
 
72ac970
1f331a4
72ac970
78003b9
 
 
 
 
 
72ac970
 
1f331a4
 
 
 
 
 
 
 
 
 
 
9db8383
 
1f331a4
65b297d
65c885b
 
65b297d
65c885b
65b297d
3a718e9
 
65c885b
 
 
 
 
72ac970
1f331a4
65b297d
1f331a4
65b297d
 
72ac970
1f331a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict

import evaluate
import datasets
from torch import Tensor, LongTensor
from torchmetrics.functional.classification.calibration_error import (
    binary_calibration_error,
    multiclass_calibration_error,
)


_CITATION = """\
@InProceedings{huggingface:ece,
title = {Expected calibration error (ECE)},
authors={Nathan Fradet},
year={2023}
}
"""

_DESCRIPTION = """\
This metrics computes the expected calibration error (ECE).
It directly calls the torchmetrics package:
https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
"""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. They must have a shape (N,C,...) if multiclass, or (N,...) if binary.
    references: list of reference for each prediction, with a shape (N,...).
Returns:
    ece: expected calibration error
Examples:
    >>> ece = evaluate.load("Natooz/ece")
    >>> results = ece.compute(
    ...     references=np.array([[0.25, 0.20, 0.55],
    ...                          [0.55, 0.05, 0.40],
    ...                          [0.10, 0.30, 0.60],
    ...                          [0.90, 0.05, 0.05]]),
    ...     predictions=np.array(),
    ...     num_classes=3,
    ...     n_bins=3,
    ...     norm="l1",
    ... )
    >>> print(results)
    {'ece': 0.2000}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ECE(evaluate.Metric):
    """
    Proxy to the BinaryCalibrationError (ECE) metric of the torchmetrics package:
    https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
    """

    def _info(self):
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(datasets.Value("float32")),
                    "references": datasets.Value("int64"),
                }
            ),
            # Homepage of the module for documentation
            homepage="https://huggingface.co/spaces/Natooz/ece",
            # Additional links to the codebase or references
            codebase_urls=[
                "https://github.com/Lightning-AI/torchmetrics/blob/v0.11.4/src/torchmetrics/classification/calibration_error.py"
            ],
            reference_urls=[
                "https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html"
            ],
        )

    def _compute(self, predictions=None, references=None, **kwargs) -> Dict[str, float]:
        """Returns the ece.
        See the torchmetrics documentation for more information on the arguments to pass.
        https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
            predictions: (N,C,...) if multiclass or (N,...) if binary
            references: (N,...)

        If "num_classes" is not provided in a multiclasses setting, the number maximum label index will
        be used as "num_classes".
        """
        # Convert the input
        predictions = Tensor(predictions)
        references = LongTensor(references)

        # Determine number of classes / binary or multiclass
        error_msg = "Expected to have predictions with shape (N,C,...) for multiclass or (N,...) for binary, " \
                    f"and references with shape (N,...), but got {predictions.shape} and {references.shape}"
        binary = True
        if predictions.dim() == references.dim() + 1:  # multiclass
            binary = False
            if "num_classes" not in kwargs:
                kwargs["num_classes"] = int(predictions.shape[1])
        elif predictions.dim() == references.dim() and "num_classes" in kwargs:
            raise ValueError("You gave the num_classes argument, with predictions and references having the"
                             "same number of dimensions. " + error_msg)
        elif predictions.dim() != references.dim():
            raise ValueError("Bad input shape. " + error_msg)

        # Compute the calibration
        if binary:
            ece = binary_calibration_error(predictions, references, **kwargs)
        else:
            ece = multiclass_calibration_error(predictions, references, **kwargs)
        return {
            "ece": float(ece),
        }