File size: 5,047 Bytes
9c80799
 
 
 
 
72ac970
 
9c80799
 
78003b9
 
 
 
72ac970
9c80799
 
72ac970
 
1f331a4
 
 
 
72ac970
 
 
 
1f331a4
 
 
72ac970
 
 
 
 
 
9c80799
 
1f331a4
72ac970
1f331a4
72ac970
1f331a4
 
 
 
 
 
 
 
 
 
 
72ac970
1f331a4
72ac970
 
 
 
 
1f331a4
9c80799
 
 
1f331a4
72ac970
9c80799
 
 
 
 
 
72ac970
 
 
 
 
 
 
78003b9
 
 
 
 
 
72ac970
1f331a4
72ac970
78003b9
 
 
 
 
 
72ac970
 
9c80799
 
 
 
 
 
 
 
 
 
1f331a4
 
9c80799
1f331a4
9c80799
 
1f331a4
 
9db8383
 
1f331a4
65b297d
9c80799
 
 
 
 
65b297d
65c885b
65b297d
3a718e9
 
65c885b
9c80799
 
 
 
65c885b
 
72ac970
1f331a4
65b297d
1f331a4
65b297d
 
72ac970
1f331a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""ECE metric file."""

from __future__ import annotations

from typing import TYPE_CHECKING

import datasets
import evaluate
from torch import LongTensor, Tensor
from torchmetrics.functional.classification.calibration_error import (
    binary_calibration_error,
    multiclass_calibration_error,
)

if TYPE_CHECKING:
    from collections.abc import Iterable

_CITATION = """\
@InProceedings{huggingface:ece,
title = {Expected calibration error (ECE)},
authors={Nathan Fradet},
year={2023}
}
"""

_DESCRIPTION = """\
This metrics computes the expected calibration error (ECE).
It directly calls the torchmetrics package:
https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
"""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. They must have a shape (N,C,...) if
        multiclass, or (N,...) if binary.
    references: list of reference for each prediction, with a shape (N,...).
Returns:
    ece: expected calibration error
Examples:
    >>> ece = evaluate.load("Natooz/ece")
    >>> results = ece.compute(
    ...     references=np.array([[0.25, 0.20, 0.55],
    ...                          [0.55, 0.05, 0.40],
    ...                          [0.10, 0.30, 0.60],
    ...                          [0.90, 0.05, 0.05]]),
    ...     predictions=np.array(),
    ...     num_classes=3,
    ...     n_bins=3,
    ...     norm="l1",
    ... )
    >>> print(results)
    {'ece': 0.2000}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ECE(evaluate.Metric):
    """
    Module for the BinaryCalibrationError (ECE) metric of the torchmetrics package.

    https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html.
    """

    def _info(self) -> evaluate.MetricInfo:
        """
        Return the module info.

        :return: module info.
        """
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(datasets.Value("float32")),
                    "references": datasets.Value("int64"),
                }
            ),
            # Homepage of the module for documentation
            homepage="https://huggingface.co/spaces/Natooz/ece",
            # Additional links to the codebase or references
            codebase_urls=[
                "https://github.com/Lightning-AI/torchmetrics/blob/v0.11.4/src/torchmetrics/classification/calibration_error.py"
            ],
            reference_urls=[
                "https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html"
            ],
        )

    def _compute(
        self,
        predictions: Iterable[float] | None = None,
        references: Iterable[int] | None = None,
        **kwargs
    ) -> dict[str, float]:
        """
        Return the Expected Calibration Error (ECE).

        See the torchmetrics documentation for more information on the method.
        https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
            predictions: (N,C,...) if multiclass or (N,...) if binary
            references: (N,...).

        If "num_classes" is not provided in a multiclass setting, the number maximum
        label index will be used as "num_classes".
        """
        # Convert the input
        predictions = Tensor(predictions)
        references = LongTensor(references)

        # Determine number of classes / binary or multiclass
        error_msg = (
            "Expected to have predictions with shape (N,C,...) for multiclass or "
            "(N,...) for binary, and references with shape (N,...), but got "
            f"{predictions.shape} and {references.shape}"
        )
        binary = True
        if predictions.dim() == references.dim() + 1:  # multiclass
            binary = False
            if "num_classes" not in kwargs:
                kwargs["num_classes"] = int(predictions.shape[1])
        elif predictions.dim() == references.dim() and "num_classes" in kwargs:
            raise ValueError(
                "You gave the num_classes argument, with predictions and references "
                "having the same number of dimensions. " + error_msg
            )
        elif predictions.dim() != references.dim():
            raise ValueError("Bad input shape. " + error_msg)

        # Compute the calibration
        if binary:
            ece = binary_calibration_error(predictions, references, **kwargs)
        else:
            ece = multiclass_calibration_error(predictions, references, **kwargs)
        return {
            "ece": float(ece),
        }