resume-api / app.py
Nattyboi's picture
removed int response
e0c985d
raw
history blame
21.3 kB
from io import BytesIO
from dotenv import load_dotenv
import os
from utils import *
from fastapi import FastAPI, File, HTTPException, Header, UploadFile,status
from tokenManagement import *
from jwtcoding import *
from fastapi.responses import JSONResponse
import docx
import fitz
from gamification.routes import gamification
from scraper import scrapeCourse
import asyncio
from google import genai
from typing import Optional,List
from pydantic import BaseModel
import re
from bson.json_util import dumps
import threading
import concurrent.futures
from gamification.pointLogic import get_all_simple_points_func,get_dream_job
from pydantic import BaseModel
from datetime import datetime
from bson import ObjectId
import os
load_dotenv()
CX = os.getenv("SEARCH_ENGINE_ID")
API_KEY = os.getenv("GOOGLE_API_KEY")
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
MONGO_URI=os.getenv("MONGO_URI")
app = FastAPI()
app.mount('/gamification',gamification)
class UserBody(BaseModel):
firstName: Optional[str] = None
lastName: Optional[str] = None
email:str
password:str
class AiAnalysis(BaseModel):
query:str
class Token(BaseModel):
refreshToken:str
class RecommendedCourse(BaseModel):
courseTitle:Optional[str]=None
courseLink:Optional[str]=None
duration:Optional[str]=None
courseLevel:Optional[str]=None
interimRoleBenefit:Optional[str]=None
dreamRoleBenefit:Optional[str]=None
courseDescription:Optional[str]=None
courseProvider:Optional[str]=None
class UserCourse(BaseModel):
employmentStatus:str
interimRole:bool
interimRoleOptions:Optional[List[str]]=None
dreamRole:str
motivation:str
learningPreference:str
timeCommitmentPerDay:str
challenges:list
timeframeToAchieveDreamRole:str
recommendedCourses: Optional[List[RecommendedCourse]]=None
class CourseRecommendation(BaseModel):
courseName: str
completionTime: str
def extract_course_info(text: str) -> CourseRecommendation:
# Example regex patterns – adjust these as needed based on the response format.
course_pattern =r'"coursename":\s*"([^"]+)"'
time_pattern = r"(\d+\s*-\s*\d+\s*months)"
course_match = re.search(course_pattern, text)
time_match = re.search(time_pattern, text)
coursename = course_match.group(1).strip() if course_match else "Unknown"
completiontime = time_match.group(0).strip() if time_match else "Unknown"
return CourseRecommendation(courseName=coursename, completionTime=completiontime)
import re
from urllib.parse import urlparse
def extract_provider(url):
# Parse the URL
parsed_url = urlparse(url)
# Extract domain and split it to get the main part
domain = parsed_url.netloc.split('.')[1]
# Extract course name
match = re.search(r'/course/([^/]+)/', url)
course_name = match.group(1) if match else "Not found"
return domain
@app.get("/courses",tags=["Scrape"])
def get_course(query):
# Example search query
results = google_search(query, API_KEY, CX)
content=[]
if results:
for item in results.get('items', []):
title = item.get('title')
link = item.get('link')
snippet = item.get('snippet')
provider = extract_provider(link)
content_structure={}
content_structure["courseTitle"]=title
content_structure["courseLink"]=link
content_structure["courseSnippet"]= snippet
content_structure["provider"]= provider
content_structure["scrapedCourseDetails"]= scrapeCourse(url=link)
content.append(content_structure)
return JSONResponse(content,status_code=200)
def get_course_func(query):
# Example search query
results = google_search(query, API_KEY, CX)
content=[]
if results:
for item in results.get('items', []):
title = item.get('title')
link = item.get('link')
snippet = item.get('snippet')
provider = extract_provider(link)
content_structure={}
content_structure["courseTitle"]=title
content_structure["courseLink"]=link
content_structure["courseSnippet"]= snippet
content_structure["scrapedCourseDetails"]= scrapeCourse(url=link)
content.append(content_structure)
return content
@app.post("/ai/upload",tags=["AI"])
async def upload_file(file: UploadFile = File(...),authorization: str = Header(...)):
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
else:
content = await file.read() # Read the file content (this will return bytes)
sentences=[]
print(f"File name: {file.filename}")
print(f"File content type: {file.content_type}")
print(f"File size: {file.size} bytes")
if "pdf" == file.filename.split('.')[1]:
pdf_document = fitz.open(stream=BytesIO(content), filetype="pdf")
extracted_text = ""
for page_num in range(pdf_document.page_count):
page = pdf_document.load_page(page_num)
extracted_text += page.get_text()
elif "docx" == file.filename.split('.')[1]:
docx_file = BytesIO(content)
doc = docx.Document(docx_file)
extracted_text = ""
for para in doc.paragraphs:
extracted_text += para.text + "\n"
sentences = split_text_into_chunks(extracted_text,chunk_size=200)
docs = generate_embedding_for_user_resume(data=sentences,user_id=file.filename)
response= insert_embeddings_into_pinecone_database(doc=docs,api_key=PINECONE_API_KEY,name_space=decoded_user_id)
return {" name": file.filename,"response":str(response) }
@app.post("/ai/ask",tags=["AI"])
def ask_ai_about_resume(req:AiAnalysis,authorization: str = Header(...)):
# Retrieve context from your vector database
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
context = query_vector_database(query=req.Query, api_key=PINECONE_API_KEY, name_space=decoded_user_id)
# Ensure that an event loop is present in this thread.
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Create the Gemini client after the event loop is set up
client = genai.Client(api_key=GEMINI_API_KEY)
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=f"""
Answer this question using the context provided:
question: {req.Query}
context: {context}
"""
)
return {"Ai_Response":response.text}
@app.post("/ai/recommend",tags=["AI"])
def ask_ai_to_recommnd_courses(request:UserCourse,authorization:str=Header(...)):
"""
User Profile Information for Career Development
This section defines the parameters used to gather information from the user to understand their current employment situation, learning preferences, challenges, and goals related to achieving their dream role.
Parameters:
employment_status (str):
A description of the user's current employment situation (e.g., "unemployed", "part-time", "full-time").
interim_role (str):
Indicates whether the user is willing to prepare for an interim role to gain experience and income while pursuing their dream role (e.g., "yes" or "no").
desired_role (str):
The role the user ultimately wishes to obtain (e.g., "Full-Stack Developer", "Data Scientist").
motivation (str):
The user's reasons or motivations for pursuing the desired role.
learning_preference (str):
Describes how the user prefers to learn new skills (e.g., "online courses", "self-study", "bootcamp").
hours_spent_learning (str or int):
The number of hours per day the user can dedicate to learning.
challenges (str):
Outlines any obstacles or challenges the user faces in reaching their dream role.
timeframe_to_achieve_dream_role (str):
The ideal timeframe the user has in mind for achieving their dream role (e.g., "6-12 months").
"""
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
# Ensure that an event loop is present in this thread.
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# # Create the Gemini client after the event loop is set up
# client = genai.Client(api_key=GEMINI_API_KEY)
# response = client.models.generate_content(
# model="gemini-2.0-flash",
# contents=f"""
# please respond with a JSON object that contains the following keys as a response:
# - "coursename": the name of the recommended course,
# - "completiontime": an estimate of how long it would take to complete the course.
# Do not include any extra text.
# Recommend a course using this information below :
# Which of the following best describes you?: {request.employmentStatus}
# Would you like to prepare for an interim role to gain experience and income while pursuing your dream job?: {request.interimRole}
# What is your desired role?: {request.dreamRole}
# Why do you want to achieve this desired role?: {request.motivation}
# How do you prefer to learn new skills?: {request.learningPreference}
# How many hours per day can you dedicate to learning?: {request.timeCommitmentPerDay}
# What are the biggest challenges or obstacles you face in reaching your dream role?: {request.challenges}
# What is your ideal timeframe for achieving your dream role?: {request.timeframeToAchieveDreamRole}
# """
# )
questions=request.model_dump()
questions['userId']=decoded_user_id
create_questionaire(db_uri=MONGO_URI,db_name="crayonics",collection_name="Questionaire",document=questions)
# course_info = extract_course_info(response.text)
# courses = get_course_func(query=course_info.courseName)
return {"courseInfo":"course_info","courses":"courses"}
@app.post("/auth/login",tags=["Authentication"])
def login(user:UserBody):
user ={"email":user.email,"password":user.password,"firstName":user.firstName,"lastName":user.lastName}
print(user)
user_id= login_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
if user_id != False:
refreshToken=create_refreshToken(db_uri=MONGO_URI,user_id=user_id)
accessToken = create_accessToken(db_uri=MONGO_URI,user_id=user_id,refresh_token=refreshToken)
result = update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refreshToken,access_token=accessToken)
print(result)
access_token = encode_jwt(user_id=user_id,access_token=accessToken)
return {"refreshToken":refreshToken,"accessToken":access_token}
return JSONResponse(status_code=401,content={"detail":"Invalid login details"})
@app.post("/auth/signup",tags=["Authentication"])
def signUp(user:UserBody):
user ={"email":user.email,"password":user.password,"first_name":user.firstName,"last_name":user.lastName}
user_id= create_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
if user_id != False:
refreshToken=create_refreshToken(db_uri=MONGO_URI,user_id=user_id)
accessToken = create_accessToken(db_uri=MONGO_URI,user_id=user_id,refresh_token=refreshToken)
result = update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refreshToken,access_token=accessToken)
print(result)
access_token = encode_jwt(user_id=user_id,access_token=accessToken)
return {"refreshToken":refreshToken,"accessToken":access_token}
return JSONResponse(status_code=status.HTTP_226_IM_USED,content="user already Exists")
@app.post("/auth/logout",tags=["Authentication"])
def logout(refresh:Token,authorization: str = Header(...)):
token = authorization.split("Bearer ")[-1]
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
result = logout_func(db_uri=MONGO_URI,refresh_token= refresh.refreshToken)
if result ==True:
return {"content": f"successful"}
else:
return JSONResponse(status_code=status.HTTP_410_GONE,content={"content": f"unsuccessful"})
@app.post("/auth/refresh",tags=["Authentication"])
def refresh_access_token(refresh_token:Token, authorization: str = Header(...)):
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_refresh_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token,refresh_token=refresh_token.refreshToken)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
new_access_token = create_accessToken(db_uri=MONGO_URI,user_id=decoded_user_id,refresh_token=refresh_token.refreshToken)
update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refresh_token.refreshToken,access_token=new_access_token)
newly_encoded_access_token = encode_jwt(user_id=decoded_user_id,access_token=new_access_token)
return {"accessToken":newly_encoded_access_token}
@app.get("/user/user-details",tags=["user"])
def get_user_details(authorization: str = Header(...)):
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
doc = {"user_id":decoded_user_id}
user_info = user_details_func(db_uri=MONGO_URI,document=doc)
return { "userInfo": user_info}
@app.get("/protected-route")
def protected_route(authorization: str = Header(...)):
# Extract the token from the Authorization header (Bearer token)
token = authorization.split("Bearer ")[-1]
# Here, you would validate the token (e.g., check with a JWT library)
decoded_user_id,decoded_access_token = decode_jwt(token)
is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
if is_valid != True: # Example check
raise HTTPException(status_code=401, detail="Invalid token")
return {"message": "Access granted", "verification": "verified"}
class LeaderBoardRanking(BaseModel):
userId:str
firstName:str
lastName:str
totalpoints:float
lastUpdated:datetime
careerPath:str
class Config:
json_encoder ={
ObjectId:str
}
def create_leaderboard_ranking( document: LeaderBoardRanking) -> bool:
collection = db['LeaderBoard']
# Insert the document
result= collection.find_one_and_replace(filter={"userId":document.userId},replacement=document.model_dump())
if result==None:
result = collection.insert_one(document.model_dump())
print("correctly inserted new document for",document.firstName)
return True
return False
def get_all_users(user_id =None) -> List:
client = MongoClient(MONGO_URI)
db = client.crayonics
collection = db['users']
# Insert the document
if user_id==None:
results= collection.find()
if results:
result = [result for result in results]
return result
client.close()
else:
result = collection.find_one(filter={"_id":ObjectId(user_id)})
return result
def get_user_id_from_docKey(dockId):
client = MongoClient(MONGO_URI)
db = client.crayonics
collection = db['Points']
# Insert the document
result = collection.find_one(filter={"_id":ObjectId(dockId)})
client.close()
return result['userId']
# MongoDB connection setup
client = MongoClient(MONGO_URI)
db = client.crayonics
collection = db['Points']
# A function to handle changes
def handle_change(change):
print("Change detected in point making changes immediately")
# add everybodies points and add it to the leaderboard table
collections = db.list_collection_names()
if "LeaderBoard" not in collections:
print("No leaderboard so creating one now")
users = get_all_users()
for user in users:
print("inserting user",f"user id {user['_id']}")
points = get_all_simple_points_func(userId=str(user['_id']))
tempDreamJob = get_dream_job(userId=str(user['_id']))
dreamJob = tempDreamJob if type(tempDreamJob)==str else "IncompleteProfile"
create_leaderboard_ranking(LeaderBoardRanking(userId=str(user['_id']),firstName=user['first_name'],lastName=user['last_name'],totalpoints=points.totalpoints,lastUpdated=datetime.now(),careerPath=dreamJob,))
leaderBoardcollection = db['LeaderBoard']
# index = leaderBoardcollection.create_index([
# ('lastName', 1),
# ('totalpoints', -1)
# ])
# print("index",index)
else:
if change['operationType'] == 'insert':
# Extract the full document
full_document = change['fullDocument']
# Extract the userId and numOfPoints
user_id =full_document.get('userId')
leveleduser = get_all_users(userId=user_id)
points = get_all_simple_points_func(userId=user_id)
tempDreamJob = get_dream_job(userId=user_id)
dreamJob = tempDreamJob if type(tempDreamJob)==str else "IncompleteProfile"
create_leaderboard_ranking(LeaderBoardRanking(userId=user_id,firstName=leveleduser['first_name'],lastName=leveleduser['last_name'],totalpoints=points.totalpoints,lastUpdated=datetime.now(),careerPath=dreamJob,))
elif change['operationType'] == 'update':
dockey = str(change['documentKey']['_id'])
user_id = get_user_id_from_docKey(dockId=dockey)
leveleduser = get_all_users(user_id=user_id)
points = get_all_simple_points_func(userId=user_id)
tempDreamJob = get_dream_job(userId=user_id)
dreamJob = tempDreamJob if type(tempDreamJob)==str else "IncompleteProfile"
create_leaderboard_ranking(LeaderBoardRanking(userId=user_id,firstName=leveleduser['first_name'],lastName=leveleduser['last_name'],totalpoints=points.totalpoints,lastUpdated=datetime.now(),careerPath=dreamJob,))
print(f"Change detected: {dumps(change)}")
# Function to run the change stream in a separate thread (non-blocking)
def watch_change_stream():
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: # Limit to 10 threads, adjust as needed
with collection.watch() as stream:
for change in stream:
# Submit the handle_change task to the thread pool
executor.submit(handle_change, change)
# Start a background thread to watch the change stream
@app.on_event("startup")
def start_change_stream():
threading.Thread(target=watch_change_stream, daemon=True).start()