File size: 21,327 Bytes
3c12613
 
 
ac3c54a
 
 
 
3c12613
 
9fe38b7
4f7effb
98b1ce4
9fe38b7
 
ca20da0
dc7e67e
4f7effb
a4cc435
 
 
 
 
 
 
 
 
 
4f7effb
3c12613
 
 
66c82c6
3c12613
 
d4296c2
3c12613
4f7effb
3c12613
dc7e67e
d4296c2
ac3c54a
 
 
 
d4296c2
 
ac3c54a
 
 
 
 
d4296c2
9ae066e
 
3ed5794
9ae066e
 
 
 
 
 
d4296c2
ac3c54a
5ec639f
06a12a0
4a3bea4
ac3c54a
 
5ec639f
 
ac3c54a
9ae066e
ca20da0
dc7e67e
 
 
ac3c54a
 
dc7e67e
 
 
 
 
 
 
 
 
 
 
 
ac3c54a
dc7e67e
 
e295414
 
dc7e67e
e295414
 
 
 
 
d1af701
e295414
 
 
 
 
 
dc7e67e
c644472
3c12613
 
 
 
 
 
 
 
 
 
e295414
3c12613
 
ac3c54a
 
 
e295414
ac3c54a
3c12613
 
 
 
 
 
 
 
dc7e67e
 
 
 
 
 
 
 
 
 
ca20da0
 
dc7e67e
ac3c54a
 
 
 
dc7e67e
f3b3e61
dc7e67e
 
 
 
 
 
3c12613
 
e96bd82
ac3c54a
 
 
3c12613
ac3c54a
 
 
 
 
 
3c12613
ac3c54a
 
3c12613
ac3c54a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c12613
 
ac3c54a
e96bd82
ac3c54a
9fe38b7
ac3c54a
 
 
 
 
 
 
 
 
9fe38b7
 
 
 
 
 
 
 
 
3c12613
9fe38b7
3c12613
9fe38b7
 
 
d4296c2
3c12613
 
 
 
dc7e67e
 
e96bd82
c644472
dc7e67e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac3c54a
 
 
 
 
 
 
 
dc7e67e
 
 
 
 
 
 
 
b8433cb
 
dc7e67e
b8433cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7e67e
 
b8433cb
 
9882738
ac3c54a
faf4724
b8433cb
 
 
d4296c2
 
 
c644472
42ec9ca
ac3c54a
5dbdab3
 
ac3c54a
 
 
 
 
 
 
827c42e
97aa98f
d4296c2
 
c644472
d4296c2
f3b3e61
d4296c2
ac3c54a
 
 
 
 
 
827c42e
e96bd82
ac3c54a
 
c644472
 
 
6adb51f
c644472
 
 
 
 
 
 
 
6adb51f
c644472
 
 
 
 
 
 
 
ac3c54a
 
 
 
 
 
c136b4b
ac3c54a
 
 
827c42e
ac3c54a
 
 
 
5dbdab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac3c54a
 
 
 
 
 
 
 
 
 
 
 
 
 
5dbdab3
 
 
a4cc435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
659f48b
a4cc435
 
 
e0c985d
a4cc435
 
e0c985d
a4cc435
 
 
2c32b64
a4cc435
2c32b64
e0c985d
 
 
 
 
a4cc435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
from io import BytesIO
from dotenv import load_dotenv
import os
from utils import *
from fastapi import FastAPI, File, HTTPException, Header, UploadFile,status
from tokenManagement import *
from jwtcoding import *
from fastapi.responses import JSONResponse
import docx
import fitz
from gamification.routes import gamification
from scraper import scrapeCourse
import asyncio
from google import genai 
from typing import Optional,List
from pydantic import BaseModel
import re
from bson.json_util import dumps
import threading
import concurrent.futures
from gamification.pointLogic import get_all_simple_points_func,get_dream_job
from pydantic import BaseModel
from datetime import datetime
from bson import ObjectId
import os 



load_dotenv()

CX = os.getenv("SEARCH_ENGINE_ID")
API_KEY = os.getenv("GOOGLE_API_KEY")
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
GEMINI_API_KEY=os.getenv("GEMINI_API_KEY")
MONGO_URI=os.getenv("MONGO_URI")
app = FastAPI()
app.mount('/gamification',gamification)


class UserBody(BaseModel):
    firstName: Optional[str] = None
    lastName: Optional[str] = None
    email:str
    password:str
    
class AiAnalysis(BaseModel):
    query:str
    
class Token(BaseModel):
    refreshToken:str


class RecommendedCourse(BaseModel):
    courseTitle:Optional[str]=None
    courseLink:Optional[str]=None
    duration:Optional[str]=None
    courseLevel:Optional[str]=None
    interimRoleBenefit:Optional[str]=None
    dreamRoleBenefit:Optional[str]=None
    courseDescription:Optional[str]=None
    courseProvider:Optional[str]=None
class UserCourse(BaseModel):
    employmentStatus:str
    interimRole:bool
    interimRoleOptions:Optional[List[str]]=None
    dreamRole:str
    motivation:str
    learningPreference:str
    timeCommitmentPerDay:str
    challenges:list
    timeframeToAchieveDreamRole:str
    recommendedCourses: Optional[List[RecommendedCourse]]=None
    


class CourseRecommendation(BaseModel):
    courseName: str
    completionTime: str

def extract_course_info(text: str) -> CourseRecommendation:
    # Example regex patterns – adjust these as needed based on the response format.
    course_pattern =r'"coursename":\s*"([^"]+)"'
    time_pattern = r"(\d+\s*-\s*\d+\s*months)"

    course_match = re.search(course_pattern, text)
    time_match = re.search(time_pattern, text)

    coursename = course_match.group(1).strip() if course_match else "Unknown"
    completiontime = time_match.group(0).strip() if time_match else "Unknown"

    return CourseRecommendation(courseName=coursename, completionTime=completiontime)


import re
from urllib.parse import urlparse

def extract_provider(url):
    # Parse the URL
    parsed_url = urlparse(url)
    
    # Extract domain and split it to get the main part
    domain = parsed_url.netloc.split('.')[1]
    
    # Extract course name
    match = re.search(r'/course/([^/]+)/', url)
    course_name = match.group(1) if match else "Not found"
    
    return domain

@app.get("/courses",tags=["Scrape"])
def get_course(query):
# Example search query
    results = google_search(query, API_KEY, CX)
    content=[]
   
    if results:
        for item in results.get('items', []):
            title = item.get('title')
            link = item.get('link')
            snippet = item.get('snippet')
            provider = extract_provider(link)
            content_structure={}
            
            content_structure["courseTitle"]=title
            content_structure["courseLink"]=link
            content_structure["courseSnippet"]= snippet
            content_structure["provider"]= provider
            content_structure["scrapedCourseDetails"]= scrapeCourse(url=link)
            content.append(content_structure)
        
    
    return JSONResponse(content,status_code=200) 
            



def get_course_func(query):
# Example search query
    results = google_search(query, API_KEY, CX)
    content=[]
   
    if results:
        for item in results.get('items', []):
            title = item.get('title')
            link = item.get('link')
            snippet = item.get('snippet')
            provider = extract_provider(link)

            content_structure={}
            content_structure["courseTitle"]=title
            content_structure["courseLink"]=link
            content_structure["courseSnippet"]= snippet
            content_structure["scrapedCourseDetails"]= scrapeCourse(url=link)
            content.append(content_structure)

    return content
            






@app.post("/ai/upload",tags=["AI"])
async def upload_file(file: UploadFile = File(...),authorization: str = Header(...)):
     # Extract the token from the Authorization header (Bearer token)
    token = authorization.split("Bearer ")[-1]
    
    # Here, you would validate the token (e.g., check with a JWT library)
    decoded_user_id,decoded_access_token = decode_jwt(token) 
    is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
    if is_valid != True:  # Example check
        raise HTTPException(status_code=401, detail="Invalid token")
    else:
    
        content = await file.read()  # Read the file content (this will return bytes)
        sentences=[]

        print(f"File name: {file.filename}")
        print(f"File content type: {file.content_type}")
        print(f"File size: {file.size} bytes")
        
        
        if "pdf" == file.filename.split('.')[1]:
            pdf_document = fitz.open(stream=BytesIO(content), filetype="pdf")
            extracted_text = ""
            for page_num in range(pdf_document.page_count):
                page = pdf_document.load_page(page_num)
                extracted_text += page.get_text()
                
        elif "docx" == file.filename.split('.')[1]:
            docx_file = BytesIO(content)
            doc = docx.Document(docx_file)
            extracted_text = ""
            for para in doc.paragraphs:
                extracted_text += para.text + "\n"
                
        sentences = split_text_into_chunks(extracted_text,chunk_size=200)
        docs = generate_embedding_for_user_resume(data=sentences,user_id=file.filename)
        response= insert_embeddings_into_pinecone_database(doc=docs,api_key=PINECONE_API_KEY,name_space=decoded_user_id)
        
        return {"   name": file.filename,"response":str(response) }    



@app.post("/ai/ask",tags=["AI"])
def ask_ai_about_resume(req:AiAnalysis,authorization: str = Header(...)):
    # Retrieve context from your vector database
    token = authorization.split("Bearer ")[-1]
    
    # Here, you would validate the token (e.g., check with a JWT library)
    decoded_user_id,decoded_access_token = decode_jwt(token) 
    is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
    if is_valid != True:  # Example check
        raise HTTPException(status_code=401, detail="Invalid token")
    
    context = query_vector_database(query=req.Query, api_key=PINECONE_API_KEY, name_space=decoded_user_id)
    
    # Ensure that an event loop is present in this thread.
    try:
        loop = asyncio.get_event_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    
    # Create the Gemini client after the event loop is set up
    client = genai.Client(api_key=GEMINI_API_KEY)
    
    response = client.models.generate_content(
        model="gemini-2.0-flash", 
        contents=f"""
        Answer this question using the context provided:
        question: {req.Query}
        context: {context}
        """
    )
    
    return {"Ai_Response":response.text}

@app.post("/ai/recommend",tags=["AI"])
def ask_ai_to_recommnd_courses(request:UserCourse,authorization:str=Header(...)):
    """
User Profile Information for Career Development

This section defines the parameters used to gather information from the user to understand their current employment situation, learning preferences, challenges, and goals related to achieving their dream role.

Parameters:

    employment_status (str): 
        A description of the user's current employment situation (e.g., "unemployed", "part-time", "full-time").
    
    interim_role (str): 
        Indicates whether the user is willing to prepare for an interim role to gain experience and income while pursuing their dream role (e.g., "yes" or "no").
    
    desired_role (str): 
        The role the user ultimately wishes to obtain (e.g., "Full-Stack Developer", "Data Scientist").
    
    motivation (str): 
        The user's reasons or motivations for pursuing the desired role.
    
    learning_preference (str): 
        Describes how the user prefers to learn new skills (e.g., "online courses", "self-study", "bootcamp").
    
    hours_spent_learning (str or int): 
        The number of hours per day the user can dedicate to learning.
    
    challenges (str): 
        Outlines any obstacles or challenges the user faces in reaching their dream role.
    
    timeframe_to_achieve_dream_role (str): 
        The ideal timeframe the user has in mind for achieving their dream role (e.g., "6-12 months").
    

    """
    

    # Extract the token from the Authorization header (Bearer token)
    token = authorization.split("Bearer ")[-1]
    
    # Here, you would validate the token (e.g., check with a JWT library)
    decoded_user_id,decoded_access_token = decode_jwt(token) 
    is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
    if is_valid != True:  # Example check
        raise HTTPException(status_code=401, detail="Invalid token")
    
    # Ensure that an event loop is present in this thread.
    try:
        loop = asyncio.get_event_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    
    # # Create the Gemini client after the event loop is set up
    # client = genai.Client(api_key=GEMINI_API_KEY)
    
    # response = client.models.generate_content(
    #     model="gemini-2.0-flash", 
    #     contents=f"""
    #     please respond with a JSON object that contains the following keys as a response:
    #     - "coursename": the name of the recommended course,
    #     - "completiontime": an estimate of how long it would take to complete the course.
    #     Do not include any extra text.
    #     Recommend a course using this information below :
    #     Which of the following best describes you?: {request.employmentStatus}
    #     Would you like to prepare for an interim role to gain experience and income while pursuing your dream job?: {request.interimRole}
    #     What is your desired role?: {request.dreamRole}
    #     Why do you want to achieve this desired role?: {request.motivation}
    #     How do you prefer to learn new skills?: {request.learningPreference}
    #     How many hours per day can you dedicate to learning?: {request.timeCommitmentPerDay}
    #     What are the biggest challenges or obstacles you face in reaching your dream role?: {request.challenges}
    #     What is your ideal timeframe for achieving your dream role?: {request.timeframeToAchieveDreamRole}
        
    
    #     """
    # )
    questions=request.model_dump()
    questions['userId']=decoded_user_id
    create_questionaire(db_uri=MONGO_URI,db_name="crayonics",collection_name="Questionaire",document=questions)
    # course_info = extract_course_info(response.text)
    # courses = get_course_func(query=course_info.courseName)
    return {"courseInfo":"course_info","courses":"courses"}



@app.post("/auth/login",tags=["Authentication"])
def login(user:UserBody):
    user ={"email":user.email,"password":user.password,"firstName":user.firstName,"lastName":user.lastName}
    print(user)
    user_id= login_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
    
    if user_id != False:
        refreshToken=create_refreshToken(db_uri=MONGO_URI,user_id=user_id)
        accessToken = create_accessToken(db_uri=MONGO_URI,user_id=user_id,refresh_token=refreshToken)
        result = update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refreshToken,access_token=accessToken)
        print(result)
        access_token = encode_jwt(user_id=user_id,access_token=accessToken)
        return {"refreshToken":refreshToken,"accessToken":access_token}
    return JSONResponse(status_code=401,content={"detail":"Invalid login details"})


@app.post("/auth/signup",tags=["Authentication"])
def signUp(user:UserBody):
    user ={"email":user.email,"password":user.password,"first_name":user.firstName,"last_name":user.lastName}
    user_id= create_user(db_uri=MONGO_URI,db_name="crayonics",collection_name="users",document=user)
    if user_id != False:
        refreshToken=create_refreshToken(db_uri=MONGO_URI,user_id=user_id)
        accessToken = create_accessToken(db_uri=MONGO_URI,user_id=user_id,refresh_token=refreshToken)
        result = update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refreshToken,access_token=accessToken)
        print(result)
        access_token = encode_jwt(user_id=user_id,access_token=accessToken)
        return {"refreshToken":refreshToken,"accessToken":access_token}
    return JSONResponse(status_code=status.HTTP_226_IM_USED,content="user already Exists")




@app.post("/auth/logout",tags=["Authentication"])
def logout(refresh:Token,authorization: str = Header(...)):
    
    token = authorization.split("Bearer ")[-1]
    
    decoded_user_id,decoded_access_token = decode_jwt(token) 
    is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
    if is_valid != True:  # Example check
        raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
    
    result = logout_func(db_uri=MONGO_URI,refresh_token= refresh.refreshToken)
    if result ==True:
        return {"content": f"successful"}
    else:
        return JSONResponse(status_code=status.HTTP_410_GONE,content={"content": f"unsuccessful"})



@app.post("/auth/refresh",tags=["Authentication"])
def refresh_access_token(refresh_token:Token, authorization: str = Header(...)):
    
    token = authorization.split("Bearer ")[-1]
    
    # Here, you would validate the token (e.g., check with a JWT library)
    decoded_user_id,decoded_access_token = decode_jwt(token) 
    is_valid = verify_refresh_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token,refresh_token=refresh_token.refreshToken)
    if is_valid != True:  # Example check
        raise HTTPException(status_code=401, detail="Invalid token")
    new_access_token = create_accessToken(db_uri=MONGO_URI,user_id=decoded_user_id,refresh_token=refresh_token.refreshToken)
    update_refreshTokenWithPreviouslyUsedAccessToken(db_uri=MONGO_URI,refresh_token=refresh_token.refreshToken,access_token=new_access_token)
    newly_encoded_access_token = encode_jwt(user_id=decoded_user_id,access_token=new_access_token) 
    return {"accessToken":newly_encoded_access_token}


@app.get("/user/user-details",tags=["user"])
def get_user_details(authorization: str = Header(...)):
    # Extract the token from the Authorization header (Bearer token)
    token = authorization.split("Bearer ")[-1]
    
    # Here, you would validate the token (e.g., check with a JWT library)
    decoded_user_id,decoded_access_token = decode_jwt(token) 
    is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
    if is_valid != True:  # Example check
        raise HTTPException(status_code=401, detail="Invalid token")
    doc = {"user_id":decoded_user_id}
    user_info = user_details_func(db_uri=MONGO_URI,document=doc)
    return { "userInfo": user_info}




@app.get("/protected-route")
def protected_route(authorization: str = Header(...)):
    # Extract the token from the Authorization header (Bearer token)
    token = authorization.split("Bearer ")[-1]
    
    # Here, you would validate the token (e.g., check with a JWT library)
    decoded_user_id,decoded_access_token = decode_jwt(token) 
    is_valid = verify_access_token(db_uri=MONGO_URI, user_id=decoded_user_id, access_token=decoded_access_token)
    if is_valid != True:  # Example check
        raise HTTPException(status_code=401, detail="Invalid token")
    
    return {"message": "Access granted", "verification": "verified"}




class LeaderBoardRanking(BaseModel):
    userId:str
    firstName:str
    lastName:str
    totalpoints:float
    lastUpdated:datetime
    careerPath:str
    class Config:
        json_encoder ={
        ObjectId:str
        }
    
    
def create_leaderboard_ranking( document: LeaderBoardRanking) -> bool:

    collection = db['LeaderBoard']
    # Insert the document
    result= collection.find_one_and_replace(filter={"userId":document.userId},replacement=document.model_dump())
    if result==None:
        result = collection.insert_one(document.model_dump())
        print("correctly inserted new document for",document.firstName)
        return True

    return False


    
def get_all_users(user_id =None) -> List:

    client = MongoClient(MONGO_URI)
    db = client.crayonics
    collection = db['users']
    # Insert the document
    if user_id==None:
        results= collection.find()
    
        if results:
            result = [result for result in  results]
            return result
        
        client.close()
    else:
        result = collection.find_one(filter={"_id":ObjectId(user_id)})
        return result


def get_user_id_from_docKey(dockId):
    client = MongoClient(MONGO_URI)
    db = client.crayonics
    collection = db['Points']
    # Insert the document 
    result = collection.find_one(filter={"_id":ObjectId(dockId)})
    client.close()
    return result['userId']

        
    
   
   
# MongoDB connection setup
client = MongoClient(MONGO_URI)
db = client.crayonics
collection = db['Points']

# A function to handle changes
def handle_change(change):
    print("Change detected in point making changes immediately")
    # add everybodies points and add it to the leaderboard table
    collections = db.list_collection_names()
    if "LeaderBoard" not in collections:
        print("No leaderboard so creating one now")
        users = get_all_users()
        for user in users:
            print("inserting user",f"user id {user['_id']}")
            points = get_all_simple_points_func(userId=str(user['_id']))
            tempDreamJob =  get_dream_job(userId=str(user['_id'])) 
            dreamJob = tempDreamJob if type(tempDreamJob)==str else "IncompleteProfile"
            
            create_leaderboard_ranking(LeaderBoardRanking(userId=str(user['_id']),firstName=user['first_name'],lastName=user['last_name'],totalpoints=points.totalpoints,lastUpdated=datetime.now(),careerPath=dreamJob,))
            leaderBoardcollection = db['LeaderBoard']
            # index = leaderBoardcollection.create_index([
            #         ('lastName', 1),
            #         ('totalpoints', -1)
            #     ])
            # print("index",index)
    else:
        if change['operationType'] == 'insert':
            # Extract the full document
            full_document = change['fullDocument']
            
            # Extract the userId and numOfPoints
            
            user_id =full_document.get('userId')
            leveleduser = get_all_users(userId=user_id)
            points = get_all_simple_points_func(userId=user_id)
            tempDreamJob =  get_dream_job(userId=user_id) 
            dreamJob = tempDreamJob if type(tempDreamJob)==str else "IncompleteProfile"
            create_leaderboard_ranking(LeaderBoardRanking(userId=user_id,firstName=leveleduser['first_name'],lastName=leveleduser['last_name'],totalpoints=points.totalpoints,lastUpdated=datetime.now(),careerPath=dreamJob,))
        elif change['operationType'] == 'update':
            dockey = str(change['documentKey']['_id'])
            user_id = get_user_id_from_docKey(dockId=dockey)
            leveleduser = get_all_users(user_id=user_id)
            points = get_all_simple_points_func(userId=user_id)
            tempDreamJob =  get_dream_job(userId=user_id)
            dreamJob = tempDreamJob if type(tempDreamJob)==str else "IncompleteProfile"
            create_leaderboard_ranking(LeaderBoardRanking(userId=user_id,firstName=leveleduser['first_name'],lastName=leveleduser['last_name'],totalpoints=points.totalpoints,lastUpdated=datetime.now(),careerPath=dreamJob,))
            
        
    print(f"Change detected: {dumps(change)}")

# Function to run the change stream in a separate thread (non-blocking)
def watch_change_stream():
    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:  # Limit to 10 threads, adjust as needed
        with collection.watch() as stream:
            for change in stream:
                # Submit the handle_change task to the thread pool
                executor.submit(handle_change, change)
# Start a background thread to watch the change stream
@app.on_event("startup")
def start_change_stream():
    threading.Thread(target=watch_change_stream, daemon=True).start()