Spaces:
Sleeping
Sleeping
Delete predict_emotions.py
Browse files- predict_emotions.py +0 -48
predict_emotions.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import BertTokenizer, DistilBertForSequenceClassification
|
3 |
-
|
4 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
5 |
-
|
6 |
-
# Load the trained model and tokenizer
|
7 |
-
try:
|
8 |
-
model = DistilBertForSequenceClassification.from_pretrained("./saved_model")
|
9 |
-
tokenizer = BertTokenizer.from_pretrained("./saved_model")
|
10 |
-
except Exception as e:
|
11 |
-
print(f"Error loading model or tokenizer: {e}")
|
12 |
-
exit()
|
13 |
-
|
14 |
-
model.to(device)
|
15 |
-
model.eval()
|
16 |
-
|
17 |
-
# Define the sentences
|
18 |
-
sentences = [
|
19 |
-
"I am so happy today!",
|
20 |
-
"This is the worst day ever.",
|
21 |
-
"I feel so loved and appreciated.",
|
22 |
-
"I am really angry right now.",
|
23 |
-
"I am so done cant take this anymore",
|
24 |
-
"i have to finish this report by tomorrow but so tired",
|
25 |
-
"let's do it",
|
26 |
-
"i have got this,, yayyyy",
|
27 |
-
"energetic",
|
28 |
-
"worst tired lazy",
|
29 |
-
"I am feeling very sad and lonely."
|
30 |
-
]
|
31 |
-
|
32 |
-
# Define the label names
|
33 |
-
label_names = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"]
|
34 |
-
|
35 |
-
def predict_emotion(sentence):
|
36 |
-
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
37 |
-
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
38 |
-
|
39 |
-
with torch.no_grad():
|
40 |
-
outputs = model(**inputs)
|
41 |
-
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
42 |
-
|
43 |
-
return predicted_class, label_names[predicted_class]
|
44 |
-
|
45 |
-
# Predict emotions for the sentences
|
46 |
-
for sentence in sentences:
|
47 |
-
predicted_emotion, predicted_label_name = predict_emotion(sentence)
|
48 |
-
print(f"Predicted emotion for '{sentence}': {predicted_emotion} ({predicted_label_name})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|