Spaces:
Sleeping
Sleeping
Delete emotions.txt
Browse files- emotions.txt +0 -140
emotions.txt
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
<<<<<<< HEAD
|
2 |
-
PS C:\Users\NAVYA\Documents\moodify> python emotions.py
|
3 |
-
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
4 |
-
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
5 |
-
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.
|
6 |
-
|
7 |
-
Dataset Columns Before Preprocessing: ['text', 'labels', 'id']
|
8 |
-
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43410/43410 [00:22<00:00, 1958.97 examples/s]
|
9 |
-
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5426/5426 [00:03<00:00, 1796.32 examples/s]
|
10 |
-
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5427/5427 [00:02<00:00, 1936.32 examples/s]
|
11 |
-
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']
|
12 |
-
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
13 |
-
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0}
|
14 |
-
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0}
|
15 |
-
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0}
|
16 |
-
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1356/1356 [1:46:08<00:00, 4.70s/it]
|
17 |
-
Training completed!
|
18 |
-
Model and tokenizer saved!
|
19 |
-
|
20 |
-
Evaluating model on test set...
|
21 |
-
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 170/170 [00:38<00:00, 4.43it/s]
|
22 |
-
|
23 |
-
Evaluation Results:
|
24 |
-
Test Accuracy: 0.5779
|
25 |
-
Test F1 Score: 0.5608
|
26 |
-
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
27 |
-
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
28 |
-
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
29 |
-
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
30 |
-
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
31 |
-
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
32 |
-
|
33 |
-
Classification Report:
|
34 |
-
precision recall f1-score support
|
35 |
-
|
36 |
-
0 0.65 0.74 0.69 504
|
37 |
-
1 0.73 0.86 0.79 252
|
38 |
-
2 0.47 0.47 0.47 197
|
39 |
-
3 0.32 0.20 0.25 286
|
40 |
-
4 0.54 0.35 0.42 318
|
41 |
-
5 0.46 0.40 0.43 114
|
42 |
-
6 0.47 0.39 0.43 139
|
43 |
-
7 0.43 0.61 0.51 233
|
44 |
-
8 0.60 0.42 0.49 74
|
45 |
-
9 0.38 0.22 0.28 127
|
46 |
-
10 0.42 0.37 0.39 220
|
47 |
-
11 0.48 0.40 0.44 84
|
48 |
-
12 0.71 0.40 0.51 30
|
49 |
-
13 0.48 0.39 0.43 84
|
50 |
-
14 0.59 0.70 0.64 74
|
51 |
-
15 0.84 0.83 0.83 288
|
52 |
-
16 0.00 0.00 0.00 6
|
53 |
-
17 0.52 0.56 0.54 116
|
54 |
-
18 0.65 0.82 0.72 169
|
55 |
-
19 0.00 0.00 0.00 16
|
56 |
-
20 0.56 0.49 0.52 120
|
57 |
-
21 0.00 0.00 0.00 8
|
58 |
-
22 0.47 0.08 0.14 109
|
59 |
-
23 0.00 0.00 0.00 7
|
60 |
-
24 0.57 0.74 0.64 46
|
61 |
-
25 0.55 0.47 0.51 108
|
62 |
-
26 0.42 0.48 0.44 92
|
63 |
-
27 0.60 0.71 0.65 1606
|
64 |
-
|
65 |
-
accuracy 0.58 5427
|
66 |
-
macro avg 0.46 0.43 0.44 5427
|
67 |
-
weighted avg 0.56 0.58 0.56 5427
|
68 |
-
|
69 |
-
Test results saved to 'test_results.csv'!
|
70 |
-
=======
|
71 |
-
PS C:\Users\NAVYA\Documents\moodify> python emotions.py
|
72 |
-
2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
73 |
-
2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
74 |
-
WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.
|
75 |
-
|
76 |
-
Dataset Columns Before Preprocessing: ['text', 'labels', 'id']
|
77 |
-
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43410/43410 [00:22<00:00, 1958.97 examples/s]
|
78 |
-
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5426/5426 [00:03<00:00, 1796.32 examples/s]
|
79 |
-
Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5427/5427 [00:02<00:00, 1936.32 examples/s]
|
80 |
-
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']
|
81 |
-
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
82 |
-
{'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0}
|
83 |
-
{'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0}
|
84 |
-
{'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0}
|
85 |
-
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1356/1356 [1:46:08<00:00, 4.70s/it]
|
86 |
-
Training completed!
|
87 |
-
Model and tokenizer saved!
|
88 |
-
|
89 |
-
Evaluating model on test set...
|
90 |
-
100%|ββββββββββββββββββββββββββββββββββοΏ½οΏ½οΏ½ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 170/170 [00:38<00:00, 4.43it/s]
|
91 |
-
|
92 |
-
Evaluation Results:
|
93 |
-
Test Accuracy: 0.5779
|
94 |
-
Test F1 Score: 0.5608
|
95 |
-
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
96 |
-
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
97 |
-
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
98 |
-
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
99 |
-
C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
|
100 |
-
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
|
101 |
-
|
102 |
-
Classification Report:
|
103 |
-
precision recall f1-score support
|
104 |
-
|
105 |
-
0 0.65 0.74 0.69 504
|
106 |
-
1 0.73 0.86 0.79 252
|
107 |
-
2 0.47 0.47 0.47 197
|
108 |
-
3 0.32 0.20 0.25 286
|
109 |
-
4 0.54 0.35 0.42 318
|
110 |
-
5 0.46 0.40 0.43 114
|
111 |
-
6 0.47 0.39 0.43 139
|
112 |
-
7 0.43 0.61 0.51 233
|
113 |
-
8 0.60 0.42 0.49 74
|
114 |
-
9 0.38 0.22 0.28 127
|
115 |
-
10 0.42 0.37 0.39 220
|
116 |
-
11 0.48 0.40 0.44 84
|
117 |
-
12 0.71 0.40 0.51 30
|
118 |
-
13 0.48 0.39 0.43 84
|
119 |
-
14 0.59 0.70 0.64 74
|
120 |
-
15 0.84 0.83 0.83 288
|
121 |
-
16 0.00 0.00 0.00 6
|
122 |
-
17 0.52 0.56 0.54 116
|
123 |
-
18 0.65 0.82 0.72 169
|
124 |
-
19 0.00 0.00 0.00 16
|
125 |
-
20 0.56 0.49 0.52 120
|
126 |
-
21 0.00 0.00 0.00 8
|
127 |
-
22 0.47 0.08 0.14 109
|
128 |
-
23 0.00 0.00 0.00 7
|
129 |
-
24 0.57 0.74 0.64 46
|
130 |
-
25 0.55 0.47 0.51 108
|
131 |
-
26 0.42 0.48 0.44 92
|
132 |
-
27 0.60 0.71 0.65 1606
|
133 |
-
|
134 |
-
accuracy 0.58 5427
|
135 |
-
macro avg 0.46 0.43 0.44 5427
|
136 |
-
weighted avg 0.56 0.58 0.56 5427
|
137 |
-
|
138 |
-
Test results saved to 'test_results.csv'!
|
139 |
-
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|
140 |
-
PS C:\Users\NAVYA\Doc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|