Spaces:
Sleeping
Sleeping
File size: 1,704 Bytes
65cb410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
import albumentations as albu
from pylab import imshow
import numpy as np
import cv2
import torch
import albumentations as albu
from iglovikov_helper_functions.utils.image_utils import load_rgb, pad, unpad
from iglovikov_helper_functions.dl.pytorch.utils import tensor_from_rgb_image
from collections import namedtuple
from tempfile import NamedTemporaryFile
import os
from people_segmentation.pre_trained_models import create_model
model = create_model("Unet_2020-07-20")
model.eval()
# Define model
import matplotlib.pyplot as plt
from pylab import imshow
def segment_people(image):
transform = albu.Compose([albu.Normalize(p=1)], p=1)
padded_image, pads = pad(image, factor=32, border=cv2.BORDER_CONSTANT)
x = transform(image=padded_image)["image"]
x = torch.unsqueeze(tensor_from_rgb_image(x), 0)
with torch.no_grad():
prediction = model(x)[0][0]
mask = (prediction > 0).cpu().numpy().astype(np.uint8)
mask = unpad(mask, pads)
dst = cv2.addWeighted(image, 1, (cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) * (0, 255, 0)).astype(np.uint8), 0.5, 0)
return dst
# Create Gradio app
def gradio_segmentation(image_path):
image = load_rgb(image_path)
mask = segment_people(image)
return mask
examples = [
[ "73.jpg"],
[ "69.jpg"],
[ "80.jpg"]
]
description = """
# People Segmentation
This application segments people from the input image. Upload an image to see the segmented output.
"""
gr.Interface(
fn=gradio_segmentation,
inputs=gr.Image(type="filepath"),
outputs=gr.Image(type="numpy"),
examples=examples,
title="People Segmentation",
description=description,
).launch()
|