Spaces:
Sleeping
Sleeping
File size: 9,841 Bytes
3a55e0a 1a1ac75 dbf5064 3a55e0a a1ae797 326d072 3a55e0a 326d072 a1ae797 dbf5064 2012a23 72eb62e 2012a23 72eb62e 2012a23 72eb62e 2012a23 72eb62e 2012a23 72eb62e 2012a23 72eb62e 2012a23 72eb62e 2012a23 72eb62e 2012a23 72eb62e dbf5064 a1ae797 6be9120 a1ae797 3a55e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import google.generativeai as genai
genai.configure(api_key="AIzaSyDxp4tYzBK7RB8y3jIIF4TpyPZgCQP8NTY")
import os
import pandas as pd
import io
import tempfile
from PyPDF2 import PdfReader
import re
import csv
from PIL import Image
import fitz # PyMuPDF
from PIL import Image
def configure_gemini(api_key: str):
"""Configure Gemini API with the provided key"""
genai.configure(api_key=api_key)
# def pdf_to_images(pdf_bytes: bytes) -> list:
# """Convert PDF bytes to list of PIL Images"""
# return convert_from_bytes(pdf_bytes)
def pdf_to_images(pdf_bytes: bytes) -> list[Image.Image]:
"""Convert PDF to PIL Images using PyMuPDF (no poppler needed)."""
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
images = []
for page in doc:
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
images.append(img)
return images
def process_local_pdf(pdf_bytes: bytes):
"""
Process a local PDF file with Gemini AI.
Args:
file_path: Path to the PDF file
prompt: The prompt template to use (should contain {page_num} if needed)
api_key: Your Google AI Studio API key
"""
# Configure Gemini
prompt = """Please analyze the provided images of the real estate document set and perform the following actions:
1. **Identify Parties**: Determine and list all present parties involved in the transaction. Always identify and include **Seller 1** and **Buyer 1** if they are present in the documents. Additionally, include **Seller 2** and **Buyer 2** only if they are explicitly mentioned.
2. **Identify Missing Items**: For each identified party, including at minimum **Seller 1** and **Buyer 1**, check all pages for any missing signatures or initials. Only check for **Seller 2** or **Buyer 2** if they were identified in step 1.
3. **Identify Checked Boxes**: Locate and list all checkboxes that have been marked or checked.
4. **Generate Secondary Questions**: For checkboxes that indicate significant waivers (e.g., home warranty, inspection rights, lead paint assessment), specific conditions (e.g., cash sale, contingency status), potential conflicts, or reference other documents, formulate a relevant 'Secondary Question' designed to prompt confirmation or clarification from the user/parties involved.
5. **Check for Required Paperwork**: Based only on the checkboxes identified in step 3 that explicitly state or strongly imply a specific addendum or disclosure document should be attached (e.g., "Lead Based Paint Disclosure Addendum attached", "See Counter Offer Addendum", "Seller's Disclosure...Addendum attached", "Retainer Addendum attached", etc.), check if a document matching that description appears to be present within the provided image set. Note whether this implied paperwork is 'Found', 'Missing', or 'Potentially Missing/Ambiguous'.
6. **Identify Conflicts**: Specifically look for and note any directly contradictory information or conflicting checked boxes (like the conflicting inspection clauses found previously).
7. **Provide Location**: For every identified item (missing signature/initial, checked box, required paperwork status, party identification, conflict), specify the approximate line number(s) or clear location on the page (e.g., Bottom Right Initials, Seller Signature Block).
8. **Format Output**: Present all findings in CSV format with the following columns:
- **Category**: (e.g., Parties, Missing Item, Checked Box, Required Paperwork, Conflict)
- **Location**: (e.g., Sale Contract (Image 8 Pg 1))
- **Line Item(s)**: (e.g., 4)
- **Item Type**: (e.g., Seller 1, Buyer 1, Seller Signature, Seller Initials)
- **Status**: (e.g., Identified, Missing, Checked, Found, Potentially Missing, Conflict)
- **Details**: (e.g., "Seller signature line (top line) is empty.", "Two initial boxes for Seller (approx line 106-107 area) are empty.")
- **Secondary Question** (if applicable): (e.g., "Is the Buyer aware they are waiving the home warranty?", "Has the Buyer received and reviewed the Seller's Disclosure?")
"""
# Convert to images
images = pdf_to_images(pdf_bytes)
# Process each page
combined_df = pd.DataFrame()
for i, img in enumerate(images):
try:
model = genai.GenerativeModel('gemini-2.5-pro-exp-03-25') # Updated model name
local_prompt = prompt.format(i+1)
# Send both the prompt and image to Gemini
response = model.generate_content([local_prompt, img])
# Extract CSV response
answer_csv = extract_csv_from_response(response)
answer_df = csv_to_dataframe(answer_csv)
# Combine DataFrames if needed
if not answer_df.empty:
combined_df = pd.concat([combined_df, answer_df], ignore_index=True)
print(f"Processed page {i+1}")
print("Response:")
print(answer_csv)
print("\n" + "="*50 + "\n")
except Exception as e:
print(f"Error processing page {i+1}: {str(e)}")
return combined_df
def analyze_single_document(images: list, prompt: str) -> dict:
"""Analyze a single document and return results"""
model = genai.GenerativeModel('gemini-2.5-pro-exp-03-25')
response = model.generate_content([prompt] + images)
return response.text
def analyze_pdf_directly(pdf_bytes: bytes, prompt: str, model_name: str = "gemini-1.5-pro"):
"""Analyze a PDF directly using Gemini's PDF support"""
model = genai.GenerativeModel(model_name)
# Create a temporary PDF file
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
tmp_file.write(pdf_bytes)
tmp_file_path = tmp_file.name
try:
# Use the file upload feature
response = model.generate_content(
[prompt, genai.upload_file(tmp_file_path)]
)
print(f"Response: {response}")
return response.text
finally:
# Clean up temporary file
if os.path.exists(tmp_file_path):
os.unlink(tmp_file_path)
def extract_response_text(response) -> str:
"""Extract text content from Gemini response object"""
try:
if hasattr(response, 'text'):
return response.text
elif hasattr(response, 'result') and hasattr(response.result, 'candidates'):
for candidate in response.result.candidates:
if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts'):
for part in candidate.content.parts:
if hasattr(part, 'text'):
return part.text
return str(response)
except Exception as e:
print(f"Error extracting response text: {str(e)}")
return str(response)
def extract_csv_from_response(response) -> str:
"""Extract CSV data from Gemini response"""
try:
# Get the text content from the response
response_text = extract_response_text(response)
# Extract CSV content between ```csv markers
csv_match = re.search(r'```csv(.*?)```', response_text, re.DOTALL)
if csv_match:
return csv_match.group(1).strip()
# Fallback: Try to find any CSV-like content
lines = []
in_csv = False
for line in response_text.split('\n'):
if ',' in line and ('Category,' in line or 'Location,' in line):
in_csv = True
if in_csv:
lines.append(line)
if lines:
return '\n'.join(lines)
return response_text # Return full response if no CSV found
except Exception as e:
print(f"Error extracting CSV: {str(e)}")
return response.text if hasattr(response, 'text') else str(response)
def csv_to_dataframe(csv_data: str) -> pd.DataFrame:
"""Convert CSV string to pandas DataFrame with error handling"""
if not csv_data.strip():
return pd.DataFrame()
try:
# Clean line breaks and extra spaces
cleaned_data = "\n".join([line.strip() for line in csv_data.split('\n') if line.strip()])
# Use CSV reader to handle irregular fields
rows = []
reader = csv.reader(io.StringIO(cleaned_data),
delimiter=',',
quotechar='"',
skipinitialspace=True)
header = next(reader)
for row in reader:
if len(row) > len(header):
# Combine extra fields into the last column
row = row[:len(header)-1] + [','.join(row[len(header)-1:])]
rows.append(row)
return pd.DataFrame(rows, columns=header)
except Exception as e:
print(f"CSV conversion error: {str(e)}")
try:
# Fallback to pandas with flexible parsing
return pd.read_csv(io.StringIO(cleaned_data),
on_bad_lines='warn',
engine='python',
quotechar='"',
skipinitialspace=True)
except Exception as fallback_error:
print(f"Fallback conversion failed: {str(fallback_error)}")
return pd.DataFrame()
def save_csv(csv_data: str, filename: str) -> str:
"""Save CSV data to file"""
with open(filename, 'w', newline='', encoding='utf-8') as csvfile:
csvfile.write(csv_data.strip())
return filename
def get_pdf_metadata(pdf_bytes: bytes) -> dict:
"""Extract basic PDF metadata"""
reader = PdfReader(io.BytesIO(pdf_bytes))
return {
'page_count': len(reader.pages),
'author': reader.metadata.author if reader.metadata else None,
'title': reader.metadata.title if reader.metadata else None
} |