Spaces:
Runtime error
Runtime error
File size: 1,298 Bytes
91877b0 19bc9fb 91877b0 19bc9fb 91877b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import os
import pandas as pd
from tqdm import tqdm
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import SupabaseVectorStore
from langchain.schema.document import Document
from supabase import create_client, Client
# --- Load Environment Variables ---
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
# --- Init Supabase & Embeddings ---
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # Or OpenAIEmbeddings if you use Groq
# --- Read CSV File ---
df = pd.read_csv("supabase_docs.csv") # Assuming columns: 'content', 'metadata' or just 'content'
# --- Convert rows to LangChain Document objects ---
documents = []
for _, row in tqdm(df.iterrows(), total=len(df)):
content = str(row["content"])
metadata = row.drop("content").to_dict() if "content" in row else {}
documents.append(Document(page_content=content, metadata=metadata))
# --- Create Supabase Vector Store and Upload ---
vectorstore = SupabaseVectorStore.from_documents(
documents=documents,
embedding=embeddings,
client=supabase,
table_name="documents",
query_name="match_documents_langchain"
)
print("β
Upload complete.")
|