Spaces:
Runtime error
Runtime error
# """LangGraph Agent""" | |
# import os | |
# from dotenv import load_dotenv | |
# from langgraph.graph import START, StateGraph, MessagesState | |
# from langgraph.prebuilt import tools_condition | |
# from langgraph.prebuilt import ToolNode | |
# from langchain_google_genai import ChatGoogleGenerativeAI | |
# from langchain_groq import ChatGroq | |
# from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
# from langchain_community.tools.tavily_search import TavilySearchResults | |
# from langchain_community.document_loaders import WikipediaLoader | |
# from langchain_community.document_loaders import ArxivLoader | |
# from langchain_community.vectorstores import SupabaseVectorStore | |
# from langchain_core.messages import SystemMessage, HumanMessage | |
# from langchain_core.tools import tool | |
# from langchain.tools.retriever import create_retriever_tool | |
# from supabase.client import Client, create_client | |
# from langchain_core.documents import Document | |
# #load_dotenv() | |
# load_dotenv(".env") | |
# @tool | |
# def multiply(a: int, b: int) -> int: | |
# """Multiply two numbers. | |
# Args: | |
# a: first int | |
# b: second int | |
# """ | |
# return a * b | |
# @tool | |
# def add(a: int, b: int) -> int: | |
# """Add two numbers. | |
# Args: | |
# a: first int | |
# b: second int | |
# """ | |
# return a + b | |
# @tool | |
# def subtract(a: int, b: int) -> int: | |
# """Subtract two numbers. | |
# Args: | |
# a: first int | |
# b: second int | |
# """ | |
# return a - b | |
# @tool | |
# def divide(a: int, b: int) -> int: | |
# """Divide two numbers. | |
# Args: | |
# a: first int | |
# b: second int | |
# """ | |
# if b == 0: | |
# raise ValueError("Cannot divide by zero.") | |
# return a / b | |
# @tool | |
# def modulus(a: int, b: int) -> int: | |
# """Get the modulus of two numbers. | |
# Args: | |
# a: first int | |
# b: second int | |
# """ | |
# return a % b | |
# @tool | |
# def wiki_search(query: str) -> str: | |
# """Search Wikipedia for a query and return maximum 2 results. | |
# Args: | |
# query: The search query.""" | |
# search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
# formatted_search_docs = "\n\n---\n\n".join( | |
# [ | |
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
# for doc in search_docs | |
# ]) | |
# return {"wiki_results": formatted_search_docs} | |
# @tool | |
# def web_search(query: str) -> str: | |
# """Search Tavily for a query and return maximum 3 results. | |
# Args: | |
# query: The search query.""" | |
# search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
# formatted_search_docs = "\n\n---\n\n".join( | |
# [ | |
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
# for doc in search_docs | |
# ]) | |
# return {"web_results": formatted_search_docs} | |
# @tool | |
# def arvix_search(query: str) -> str: | |
# """Search Arxiv for a query and return maximum 3 result. | |
# Args: | |
# query: The search query.""" | |
# search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
# formatted_search_docs = "\n\n---\n\n".join( | |
# [ | |
# f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
# for doc in search_docs | |
# ]) | |
# return {"arvix_results": formatted_search_docs} | |
# # load the system prompt from the file | |
# with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
# system_prompt = f.read() | |
# # System message | |
# sys_msg = SystemMessage(content=system_prompt) | |
# # build a retriever | |
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 | |
# # supabase: Client = create_client( | |
# # os.environ.get("SUPABASE_URL"), | |
# # os.environ.get("SUPABASE_SERVICE_KEY")) | |
# supabase_url = os.getenv("SUPABASE_URL") | |
# supabase_key = os.getenv("SUPABASE_KEY") | |
# if not supabase_url or not supabase_key: | |
# raise ValueError("SUPABASE_URL and SUPABASE_KEY must be set in environment variables.") | |
# supabase: Client = create_client(supabase_url, supabase_key) | |
# docs = [Document(page_content="This is a test about AI.")] | |
# vector_store = SupabaseVectorStore( | |
# client=supabase, # should be your `supabase` client instance | |
# embedding=embeddings, | |
# table_name="documents", | |
# query_name="match_documents_langchain", | |
# ) | |
# # Add documents | |
# vector_store.add_documents(docs) | |
# print("π Testing similarity_search with: 'What is AI?'") | |
# results = vector_store.similarity_search("What is AI?") | |
# print(f"β Got {len(results)} results.") | |
# if results: | |
# print("First result content:\n", results[0].page_content) | |
# create_retriever_tool = create_retriever_tool( | |
# retriever=vector_store.as_retriever(), | |
# name="Question Search", | |
# description="A tool to retrieve similar questions from a vector store.", | |
# ) | |
# tools = [ | |
# multiply, | |
# add, | |
# subtract, | |
# divide, | |
# modulus, | |
# wiki_search, | |
# web_search, | |
# arvix_search, | |
# ] | |
# # Build graph function | |
# def build_graph(provider: str = "groq"): | |
# """Build the graph""" | |
# # Load environment variables from .env file | |
# if provider == "google": | |
# # Google Gemini | |
# llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
# elif provider == "groq": | |
# # Groq https://console.groq.com/docs/models | |
# llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it | |
# elif provider == "huggingface": | |
# # TODO: Add huggingface endpoint | |
# llm = ChatHuggingFace( | |
# llm=HuggingFaceEndpoint( | |
# url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
# temperature=0, | |
# ), | |
# ) | |
# else: | |
# raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
# # Bind tools to LLM | |
# llm_with_tools = llm.bind_tools(tools) | |
# def assistant(state: MessagesState): | |
# """Assistant node""" | |
# print("\nπ§ Final prompt to model:") | |
# for m in state["messages"]: | |
# print(f"{m.type.upper()}: {m.content[:300]}...\n") # truncate for readability | |
# response = llm_with_tools.invoke(state["messages"]) | |
# print("π¬ Model response:", response.content[:500], "\n") | |
# return {"messages": [response]} | |
# # Node | |
# # def assistant(state: MessagesState): | |
# # """Assistant node""" | |
# # return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
# # def retriever(state: MessagesState): | |
# # """Retriever node""" | |
# # similar_question = vector_store.similarity_search(state["messages"][0].content) | |
# # example_msg = HumanMessage( | |
# # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
# # ) | |
# # return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
# def retriever(state: MessagesState): | |
# """Retriever node""" | |
# messages = state.get("messages", []) | |
# if not messages: | |
# print("β οΈ No messages received in retriever node.") | |
# return {"messages": []} | |
# query = messages[0].content | |
# print(f"\nπ Query to vector store: {query}") | |
# try: | |
# similar_question = vector_store.similarity_search(query) | |
# except Exception as e: | |
# print(f"β similarity_search failed: {e}") | |
# return {"messages": messages} | |
# if not similar_question: | |
# print("β οΈ No similar questions found.") | |
# return {"messages": messages} | |
# print(f"β Found {len(similar_question)} similar question(s).") | |
# print("π First retrieved doc:\n", similar_question[0].page_content) | |
# example_msg = HumanMessage( | |
# content=f"Here I provide a similar question and answer for reference:\n\n{similar_question[0].page_content}" | |
# ) | |
# return {"messages": [sys_msg] + messages + [example_msg]} | |
# builder = StateGraph(MessagesState) | |
# builder.add_node("retriever", retriever) | |
# builder.add_node("assistant", assistant) | |
# builder.add_node("tools", ToolNode(tools)) | |
# builder.add_edge(START, "retriever") | |
# builder.add_edge("retriever", "assistant") | |
# builder.add_conditional_edges( | |
# "assistant", | |
# tools_condition, | |
# ) | |
# builder.add_edge("tools", "assistant") | |
# # Compile graph | |
# return builder.compile() | |
# # test | |
# if __name__ == "__main__": | |
# question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" | |
# # Build the graph | |
# graph = build_graph(provider="groq") | |
# # Run the graph | |
# messages = [HumanMessage(content=question)] | |
# messages = graph.invoke({"messages": messages}) | |
# for m in messages["messages"]: | |
# m.pretty_print() | |
"""LangGraph Agent""" | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from supabase.client import Client, create_client | |
load_dotenv() | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"arvix_results": formatted_search_docs} | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# build a retriever | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 | |
supabase: Client = create_client( | |
os.environ.get("SUPABASE_URL"), | |
os.environ.get("SUPABASE_SERVICE_KEY")) | |
vector_store = SupabaseVectorStore( | |
client=supabase, | |
embedding= embeddings, | |
table_name="documents", | |
query_name="match_documents_langchain", | |
) | |
create_retriever_tool = create_retriever_tool( | |
retriever=vector_store.as_retriever(), | |
name="Question Search", | |
description="A tool to retrieve similar questions from a vector store.", | |
) | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arvix_search, | |
] | |
# Build graph function | |
def build_graph(provider: str = "google"): | |
"""Build the graph""" | |
# Load environment variables from .env file | |
if provider == "google": | |
# Google Gemini | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
elif provider == "groq": | |
# Groq https://console.groq.com/docs/models | |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it | |
elif provider == "huggingface": | |
# TODO: Add huggingface endpoint | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
temperature=0, | |
), | |
) | |
else: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Node | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
# def retriever(state: MessagesState): | |
# """Retriever node""" | |
# similar_question = vector_store.similarity_search(state["messages"][0].content) | |
#example_msg = HumanMessage( | |
# content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
# ) | |
# return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
from langchain_core.messages import AIMessage | |
def retriever(state: MessagesState): | |
query = state["messages"][-1].content | |
similar_doc = vector_store.similarity_search(query, k=1)[0] | |
content = similar_doc.page_content | |
if "Final answer :" in content: | |
answer = content.split("Final answer :")[-1].strip() | |
else: | |
answer = content.strip() | |
return {"messages": [AIMessage(content=answer)]} | |
# builder = StateGraph(MessagesState) | |
#builder.add_node("retriever", retriever) | |
#builder.add_node("assistant", assistant) | |
#builder.add_node("tools", ToolNode(tools)) | |
#builder.add_edge(START, "retriever") | |
#builder.add_edge("retriever", "assistant") | |
#builder.add_conditional_edges( | |
# "assistant", | |
# tools_condition, | |
#) | |
#builder.add_edge("tools", "assistant") | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
# Retriever ist Start und Endpunkt | |
builder.set_entry_point("retriever") | |
builder.set_finish_point("retriever") | |
# Compile graph | |
return builder.compile() | |