Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,6 @@ from agent import build_graph
|
|
12 |
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
-
#DEFAULT_API_URL= "https://neda1-agent-final.hf.space.hf.space"
|
16 |
|
17 |
# --- Basic Agent Definition ---
|
18 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
@@ -26,11 +25,11 @@ class BasicAgent:
|
|
26 |
|
27 |
def __call__(self, question: str) -> str:
|
28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
-
# Wrap the question in a HumanMessage from langchain_core
|
30 |
messages = [HumanMessage(content=question)]
|
31 |
-
|
32 |
-
answer =
|
33 |
-
return answer[14:]
|
|
|
34 |
|
35 |
|
36 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
@@ -39,7 +38,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
39 |
and displays the results.
|
40 |
"""
|
41 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
42 |
-
space_id = os.getenv("SPACE_ID"
|
43 |
|
44 |
if profile:
|
45 |
username= f"{profile.username}"
|
@@ -188,7 +187,6 @@ if __name__ == "__main__":
|
|
188 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
189 |
space_host_startup = os.getenv("SPACE_HOST")
|
190 |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
191 |
-
|
192 |
|
193 |
if space_host_startup:
|
194 |
print(f"β
SPACE_HOST found: {space_host_startup}")
|
@@ -206,47 +204,257 @@ if __name__ == "__main__":
|
|
206 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
207 |
|
208 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
|
225 |
|
226 |
-
|
227 |
|
228 |
-
|
229 |
-
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
|
241 |
-
|
242 |
|
243 |
-
|
244 |
-
|
245 |
|
246 |
-
|
247 |
|
248 |
|
249 |
|
250 |
|
251 |
|
252 |
-
|
|
|
12 |
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
15 |
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
|
|
25 |
|
26 |
def __call__(self, question: str) -> str:
|
27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
28 |
messages = [HumanMessage(content=question)]
|
29 |
+
result = self.graph.invoke({"messages": messages})
|
30 |
+
answer = result['messages'][-1].content
|
31 |
+
return answer # kein [14:] mehr nΓΆtig!
|
32 |
+
|
33 |
|
34 |
|
35 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
38 |
and displays the results.
|
39 |
"""
|
40 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
41 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
42 |
|
43 |
if profile:
|
44 |
username= f"{profile.username}"
|
|
|
187 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
188 |
space_host_startup = os.getenv("SPACE_HOST")
|
189 |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
|
|
190 |
|
191 |
if space_host_startup:
|
192 |
print(f"β
SPACE_HOST found: {space_host_startup}")
|
|
|
204 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
205 |
|
206 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
207 |
+
demo.launch(debug=True, share=False)
|
208 |
+
|
209 |
+
# """ Basic Agent Evaluation Runner"""
|
210 |
+
# import os
|
211 |
+
# import inspect
|
212 |
+
# import gradio as gr
|
213 |
+
# import requests
|
214 |
+
# import pandas as pd
|
215 |
+
# from langchain_core.messages import HumanMessage
|
216 |
+
# from agent import build_graph
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
# # (Keep Constants as is)
|
221 |
+
# # --- Constants ---
|
222 |
+
# DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
223 |
+
# #DEFAULT_API_URL= "https://neda1-agent-final.hf.space.hf.space"
|
224 |
+
|
225 |
+
# # --- Basic Agent Definition ---
|
226 |
+
# # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
227 |
+
|
228 |
+
|
229 |
+
# class BasicAgent:
|
230 |
+
# """A langgraph agent."""
|
231 |
+
# def __init__(self):
|
232 |
+
# print("BasicAgent initialized.")
|
233 |
+
# self.graph = build_graph()
|
234 |
+
|
235 |
+
# def __call__(self, question: str) -> str:
|
236 |
+
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
237 |
+
# # Wrap the question in a HumanMessage from langchain_core
|
238 |
+
# messages = [HumanMessage(content=question)]
|
239 |
+
# messages = self.graph.invoke({"messages": messages})
|
240 |
+
# answer = messages['messages'][-1].content
|
241 |
+
# return answer[14:]
|
242 |
+
|
243 |
+
|
244 |
+
# def run_and_submit_all( profile: gr.OAuthProfile | None):
|
245 |
+
# """
|
246 |
+
# Fetches all questions, runs the BasicAgent on them, submits all answers,
|
247 |
+
# and displays the results.
|
248 |
+
# """
|
249 |
+
# # --- Determine HF Space Runtime URL and Repo URL ---
|
250 |
+
# space_id = os.getenv("SPACE_ID", "https://huggingface.co/spaces/Neda1/agent_final")# Get the SPACE_ID for sending link to the code
|
251 |
+
|
252 |
+
# if profile:
|
253 |
+
# username= f"{profile.username}"
|
254 |
+
# print(f"User logged in: {username}")
|
255 |
+
# else:
|
256 |
+
# print("User not logged in.")
|
257 |
+
# return "Please Login to Hugging Face with the button.", None
|
258 |
+
|
259 |
+
# api_url = DEFAULT_API_URL
|
260 |
+
# questions_url = f"{api_url}/questions"
|
261 |
+
# submit_url = f"{api_url}/submit"
|
262 |
+
|
263 |
+
# # 1. Instantiate Agent ( modify this part to create your agent)
|
264 |
+
# try:
|
265 |
+
# agent = BasicAgent()
|
266 |
+
# except Exception as e:
|
267 |
+
# print(f"Error instantiating agent: {e}")
|
268 |
+
# return f"Error initializing agent: {e}", None
|
269 |
+
# # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
270 |
+
# agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
271 |
+
# print(agent_code)
|
272 |
+
|
273 |
+
# # 2. Fetch Questions
|
274 |
+
# print(f"Fetching questions from: {questions_url}")
|
275 |
+
# try:
|
276 |
+
# response = requests.get(questions_url, timeout=15)
|
277 |
+
# response.raise_for_status()
|
278 |
+
# questions_data = response.json()
|
279 |
+
# if not questions_data:
|
280 |
+
# print("Fetched questions list is empty.")
|
281 |
+
# return "Fetched questions list is empty or invalid format.", None
|
282 |
+
# print(f"Fetched {len(questions_data)} questions.")
|
283 |
+
# except requests.exceptions.RequestException as e:
|
284 |
+
# print(f"Error fetching questions: {e}")
|
285 |
+
# return f"Error fetching questions: {e}", None
|
286 |
+
# except requests.exceptions.JSONDecodeError as e:
|
287 |
+
# print(f"Error decoding JSON response from questions endpoint: {e}")
|
288 |
+
# print(f"Response text: {response.text[:500]}")
|
289 |
+
# return f"Error decoding server response for questions: {e}", None
|
290 |
+
# except Exception as e:
|
291 |
+
# print(f"An unexpected error occurred fetching questions: {e}")
|
292 |
+
# return f"An unexpected error occurred fetching questions: {e}", None
|
293 |
+
|
294 |
+
# # 3. Run your Agent
|
295 |
+
# results_log = []
|
296 |
+
# answers_payload = []
|
297 |
+
# print(f"Running agent on {len(questions_data)} questions...")
|
298 |
+
# for item in questions_data:
|
299 |
+
# task_id = item.get("task_id")
|
300 |
+
# question_text = item.get("question")
|
301 |
+
# if not task_id or question_text is None:
|
302 |
+
# print(f"Skipping item with missing task_id or question: {item}")
|
303 |
+
# continue
|
304 |
+
# try:
|
305 |
+
# submitted_answer = agent(question_text)
|
306 |
+
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
307 |
+
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
308 |
+
# except Exception as e:
|
309 |
+
# print(f"Error running agent on task {task_id}: {e}")
|
310 |
+
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
311 |
+
|
312 |
+
# if not answers_payload:
|
313 |
+
# print("Agent did not produce any answers to submit.")
|
314 |
+
# return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
315 |
+
|
316 |
+
# # 4. Prepare Submission
|
317 |
+
# submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
318 |
+
# status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
319 |
+
# print(status_update)
|
320 |
+
|
321 |
+
# # 5. Submit
|
322 |
+
# print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
323 |
+
# try:
|
324 |
+
# response = requests.post(submit_url, json=submission_data, timeout=60)
|
325 |
+
# response.raise_for_status()
|
326 |
+
# result_data = response.json()
|
327 |
+
# final_status = (
|
328 |
+
# f"Submission Successful!\n"
|
329 |
+
# f"User: {result_data.get('username')}\n"
|
330 |
+
# f"Overall Score: {result_data.get('score', 'N/A')}% "
|
331 |
+
# f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
332 |
+
# f"Message: {result_data.get('message', 'No message received.')}"
|
333 |
+
# )
|
334 |
+
# print("Submission successful.")
|
335 |
+
# results_df = pd.DataFrame(results_log)
|
336 |
+
# return final_status, results_df
|
337 |
+
# except requests.exceptions.HTTPError as e:
|
338 |
+
# error_detail = f"Server responded with status {e.response.status_code}."
|
339 |
+
# try:
|
340 |
+
# error_json = e.response.json()
|
341 |
+
# error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
342 |
+
# except requests.exceptions.JSONDecodeError:
|
343 |
+
# error_detail += f" Response: {e.response.text[:500]}"
|
344 |
+
# status_message = f"Submission Failed: {error_detail}"
|
345 |
+
# print(status_message)
|
346 |
+
# results_df = pd.DataFrame(results_log)
|
347 |
+
# return status_message, results_df
|
348 |
+
# except requests.exceptions.Timeout:
|
349 |
+
# status_message = "Submission Failed: The request timed out."
|
350 |
+
# print(status_message)
|
351 |
+
# results_df = pd.DataFrame(results_log)
|
352 |
+
# return status_message, results_df
|
353 |
+
# except requests.exceptions.RequestException as e:
|
354 |
+
# status_message = f"Submission Failed: Network error - {e}"
|
355 |
+
# print(status_message)
|
356 |
+
# results_df = pd.DataFrame(results_log)
|
357 |
+
# return status_message, results_df
|
358 |
+
# except Exception as e:
|
359 |
+
# status_message = f"An unexpected error occurred during submission: {e}"
|
360 |
+
# print(status_message)
|
361 |
+
# results_df = pd.DataFrame(results_log)
|
362 |
+
# return status_message, results_df
|
363 |
+
|
364 |
+
|
365 |
+
# # --- Build Gradio Interface using Blocks ---
|
366 |
+
# with gr.Blocks() as demo:
|
367 |
+
# gr.Markdown("# Basic Agent Evaluation Runner")
|
368 |
+
# gr.Markdown(
|
369 |
+
# """
|
370 |
+
# **Instructions:**
|
371 |
+
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
372 |
+
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
373 |
+
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
374 |
+
# ---
|
375 |
+
# **Disclaimers:**
|
376 |
+
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
377 |
+
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
378 |
+
# """
|
379 |
+
# )
|
380 |
+
|
381 |
+
# gr.LoginButton()
|
382 |
+
|
383 |
+
# run_button = gr.Button("Run Evaluation & Submit All Answers")
|
384 |
+
|
385 |
+
# status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
386 |
+
# # Removed max_rows=10 from DataFrame constructor
|
387 |
+
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
388 |
+
|
389 |
+
# run_button.click(
|
390 |
+
# fn=run_and_submit_all,
|
391 |
+
# outputs=[status_output, results_table]
|
392 |
+
# )
|
393 |
+
|
394 |
+
# if __name__ == "__main__":
|
395 |
+
# print("\n" + "-"*30 + " App Starting " + "-"*30)
|
396 |
+
# # Check for SPACE_HOST and SPACE_ID at startup for information
|
397 |
+
# space_host_startup = os.getenv("SPACE_HOST")
|
398 |
+
# space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
399 |
+
|
400 |
+
|
401 |
+
# if space_host_startup:
|
402 |
+
# print(f"β
SPACE_HOST found: {space_host_startup}")
|
403 |
+
# print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
404 |
+
# else:
|
405 |
+
# print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
406 |
+
|
407 |
+
# if space_id_startup: # Print repo URLs if SPACE_ID is found
|
408 |
+
# print(f"β
SPACE_ID found: {space_id_startup}")
|
409 |
+
# print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
410 |
+
# print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
411 |
+
# else:
|
412 |
+
# print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
413 |
+
|
414 |
+
# print("-"*(60 + len(" App Starting ")) + "\n")
|
415 |
+
|
416 |
+
# print("Launching Gradio Interface for Basic Agent Evaluation...")
|
417 |
+
# with gr.Blocks() as demo:
|
418 |
+
# gr.Markdown("# Basic Agent Evaluation Runner")
|
419 |
+
# gr.Markdown(
|
420 |
+
# """
|
421 |
+
# **Instructions:**
|
422 |
+
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
423 |
+
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
424 |
+
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
425 |
+
# ---
|
426 |
+
# **Disclaimers:**
|
427 |
+
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
428 |
+
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
429 |
+
# """
|
430 |
+
# )
|
431 |
|
432 |
+
# gr.LoginButton()
|
433 |
|
434 |
+
# run_button = gr.Button("Run Evaluation & Submit All Answers")
|
435 |
|
436 |
+
# status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
437 |
+
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
438 |
|
439 |
+
# run_button.click(
|
440 |
+
# fn=run_and_submit_all,
|
441 |
+
# outputs=[status_output, results_table]
|
442 |
+
# )
|
443 |
|
444 |
+
# # β
Manual Test Interface (Put inside Blocks!)
|
445 |
+
# gr.Markdown("## Ask your Agent Any Question (Manual Test)")
|
446 |
+
# free_question = gr.Textbox(label="Ask your own question")
|
447 |
+
# free_response = gr.Textbox(label="Agent's Response", interactive=False)
|
448 |
|
449 |
+
# test_agent = BasicAgent()
|
450 |
|
451 |
+
# def run_custom_query(q):
|
452 |
+
# return test_agent(q)
|
453 |
|
454 |
+
# free_question.submit(fn=run_custom_query, inputs=free_question, outputs=free_response)
|
455 |
|
456 |
|
457 |
|
458 |
|
459 |
|
460 |
+
# demo.launch(debug=True, share=False)
|