Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,48 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
|
4 |
import numpy as np
|
5 |
import soundfile as sf
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def load_model(model_path, config_path):
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
model.eval()
|
|
|
12 |
return model
|
13 |
|
14 |
-
#
|
15 |
-
MODEL_PATH = 'path/to/best_model.pth'
|
16 |
-
CONFIG_PATH = 'path/to/config.json'
|
17 |
-
|
18 |
model = load_model(MODEL_PATH, CONFIG_PATH)
|
19 |
|
20 |
# Define the function to generate speech
|
21 |
def generate_speech(text):
|
22 |
-
# Convert text to
|
23 |
-
|
|
|
24 |
|
25 |
with torch.no_grad():
|
26 |
-
# Generate
|
27 |
-
|
28 |
|
29 |
-
# Convert
|
30 |
-
# This
|
31 |
-
audio_waveform =
|
32 |
|
33 |
# Save the waveform to a temporary file
|
34 |
temp_file = 'temp.wav'
|
@@ -41,10 +55,10 @@ interface = gr.Interface(
|
|
41 |
fn=generate_speech,
|
42 |
inputs="text",
|
43 |
outputs="audio",
|
44 |
-
title="
|
45 |
-
description="Generate speech from text using
|
46 |
)
|
47 |
|
48 |
# Launch the Gradio interface
|
49 |
if __name__ == "__main__":
|
50 |
-
interface.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
import json
|
4 |
import numpy as np
|
5 |
import soundfile as sf
|
6 |
|
7 |
+
# Import your Glow-TTS model and related utilities
|
8 |
+
from glow_tts.models import GlowTTS
|
9 |
+
from glow_tts.utils import text_to_sequence, sequence_to_mel # Replace with actual functions if different
|
10 |
+
|
11 |
+
# Define paths to your model and configuration (relative paths)
|
12 |
+
MODEL_PATH = 'best_model.pth'
|
13 |
+
CONFIG_PATH = 'config.json'
|
14 |
+
|
15 |
+
# Load configuration and model
|
16 |
def load_model(model_path, config_path):
|
17 |
+
# Load the model configuration
|
18 |
+
with open(config_path, 'r') as f:
|
19 |
+
config = json.load(f)
|
20 |
+
|
21 |
+
# Initialize the Glow-TTS model
|
22 |
+
model = GlowTTS(config)
|
23 |
+
|
24 |
+
# Load the trained model weights
|
25 |
+
model.load_state_dict(torch.load(model_path))
|
26 |
model.eval()
|
27 |
+
|
28 |
return model
|
29 |
|
30 |
+
# Load the model
|
|
|
|
|
|
|
31 |
model = load_model(MODEL_PATH, CONFIG_PATH)
|
32 |
|
33 |
# Define the function to generate speech
|
34 |
def generate_speech(text):
|
35 |
+
# Convert text to sequence
|
36 |
+
sequence = text_to_sequence(text)
|
37 |
+
inputs = torch.tensor(sequence).unsqueeze(0) # Add batch dimension
|
38 |
|
39 |
with torch.no_grad():
|
40 |
+
# Generate mel spectrogram from text sequence
|
41 |
+
mel_output = model(inputs)
|
42 |
|
43 |
+
# Convert mel spectrogram to waveform
|
44 |
+
# This step might require a vocoder (e.g., HiFi-GAN) to convert mel spectrograms to audio
|
45 |
+
audio_waveform = mel_to_audio(mel_output) # Replace with actual conversion if needed
|
46 |
|
47 |
# Save the waveform to a temporary file
|
48 |
temp_file = 'temp.wav'
|
|
|
55 |
fn=generate_speech,
|
56 |
inputs="text",
|
57 |
outputs="audio",
|
58 |
+
title="Glow-TTS Model",
|
59 |
+
description="Generate speech from text using the Glow-TTS model."
|
60 |
)
|
61 |
|
62 |
# Launch the Gradio interface
|
63 |
if __name__ == "__main__":
|
64 |
+
interface.launch()
|