Spaces:
Runtime error
Runtime error
File size: 8,077 Bytes
8e2b48f edfbd07 8e2b48f 325988c 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 254c56e 8e2b48f edfbd07 254c56e 8e2b48f 254c56e 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 254c56e 8e2b48f edfbd07 8e2b48f 254c56e 8e2b48f 254c56e 8e2b48f edfbd07 8e2b48f edfbd07 8e2b48f edfbd07 254c56e edfbd07 8e2b48f 254c56e edfbd07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import time
import random
import os
import shutil
# How to RUN code ==> gradio gradio_llm_example.py
# Define text and title information
title1 = "## </br> </br> </br> 🤗💬 QA App"
title2 = " ## </br> </br> </br> Gradio QA Bot"
intro = """ Welcome! This is not just any bot, it's a special one equipped with state-of-the-art natural language processing capabilities, and ready to answer your queries.
Ready to explore? Let's get started!
* Step 1: Upload a PDF document.
* Step 2: Type in a question related to your document's content.
* Step 3: Get your answer!
Push clear cache before uploading a new doc!
"""
about = """
## </br> About
This app is an LLM-powered chatbot built using:
- [Streamlit](<https://streamlit.io/>)
- [HugChat](<https://github.com/Soulter/hugging-chat-api>)
- Chat Model = llama2-chat-hf 7B
- Retreiver model = all-MiniLM-L6-v2
</br>
💡 Note: No API key required!
</br>
Made with ❤️ by us
"""
# Define theme ==> see gr.themes.builder()
theme = gr.themes.Soft(
primary_hue="emerald",
secondary_hue="emerald",
neutral_hue="slate",
).set(
body_background_fill_dark='*primary_50',
shadow_drop='*shadow_spread',
button_border_width='*block_border_width',
button_border_width_dark='*block_label_border_width'
)
def upload_file(files_obj):
""" Upload several files from drag and drop, and save them in local temp folder
files_obj (type:list) : list of tempfile._TemporaryFileWrapper
return checkbox to display uploaded documents """
# Create local copy
temp_file_path = "./temp"
if not os.path.exists(temp_file_path):
os.makedirs(temp_file_path)
# Save each file among list of given files
file_name_list = list()
for file_obj in files_obj :
file_name = os.path.basename(file_obj.name)
file_name_list.append(file_name)
shutil.copyfile(file_obj.name, os.path.join(temp_file_path, file_name))
# return visible button for next selection
return {uploaded_check : gr.CheckboxGroup(choices=file_name_list, visible=True),
choose_btn : gr.Button(value="Choose", visible=True)}
def read_content(content, files_name):
""" Read and update the content variable (state) according to the several files_names to read from temp folder
return updated content_var (type : list of str)
return visible error_box to display logs error """
content_list = list()
text_list = list()
# Parse one or several docs among the selected ones
for file_name in files_name :
print(file_name, type(file_name))
temp_file_path = "./temp"
file_path = os.path.join(temp_file_path, file_name)
# Read doc
with open(file_path, "rb") as file:
try:
content = file.read()
#### YOUR FONCTION FOR CONTENT ==> must be str
my_content = str(content[:10])
content_list.append(my_content)
text_list.append(f"File {file_name} ready to be used. \n")
print(content)
except Exception as e:
print(f"Error occurred while writing the file: {e}")
text_list.append(f"Error occurred while writing the file {file_name}: {e}")
return {content_var : content_list,
error_box : gr.Textbox(value=f"""{" and ".join(text_list)} \n You can ask a question about the uploaded PDF document.""", visible=True)}
### YOUR model using the same inputand returning output
def my_model(message, chat_history, content_var,
language_choice, model_choice, max_length, temperature,
num_return_sequences, top_p, no_repeat_ngram_size):
#No LLM here, just respond with a random pre-made message
if content_var == []:
bot_message = f"Pas de context : {content_var}" + random.choice(["Tell me more about it",
"Cool, but I'm not interested",
"Hmmmm, ok then"])
else:
bot_message = f" Voici le context {content_var}"
chat_history.append((message, bot_message))
return "", chat_history
def queue_bot(history):
""" For in progress display during chat """
bot_message = history[-1][1]
history[-1][1] = ""
for character in bot_message:
history[-1][1] += character
time.sleep(0.05)
yield history
# App
with gr.Blocks(theme=gr.themes.Soft()) as gradioApp:
# Initialize the document context variable as empty without any drag and drop
content_var = gr.State([])
# Layout
with gr.Row():
# Row 1 : About
with gr.Column(scale=1, min_width=100):
# gr.Image("./logo_neovision.png")
logo_gr = gr.Markdown(""" <img src="file/logo_neovision.png" alt="logo" style="width:400px;"/>""")
about_gr = gr.Markdown(about)
# Row 2 : Param
with gr.Column(scale=2, min_width=500):
title1_gr= gr.Markdown(title1)
intro_gr = gr.Markdown(intro)
# Upload several documents
upload_button = gr.UploadButton("Browse files", label="Drag and drop your documents here",
size="lg", scale=0, min_width=100,
file_types=["pdf"], file_count="multiple")
# invisible button while no documents uploaded
uploaded_check = gr.CheckboxGroup(label="Uploaded documents", visible=False,
info="Do you want to use a supporting document?")
choose_btn = gr.Button(value="Choose", visible=False)
# uploading one or several docs and display other buttons
upload_button.upload(upload_file, upload_button, [uploaded_check, choose_btn])
# Read only one document
error_box = gr.Textbox(label="Reading files... ", visible=False) # display only when ready or error
choose_btn.click(read_content, inputs=[content_var, uploaded_check], outputs=[content_var, error_box])
# Select advanced options, to be given as input for your model
gr.Markdown(""" ## Toolbox """)
with gr.Accordion(label="Select advanced options",open=False):
model_choice = gr.Dropdown(["LLM", "Other"], label="Model", info="Choose your AI model")
language_choice = gr.Dropdown(["English", "French"], label="Language", info="Choose your language")
max_length = gr.Slider(label="Token length", minimum=1, maximum=100, value=50, step=1)
temperature= gr.Slider(label="Temperature", minimum=0.1, maximum=1, value=0.8, step=0.1)
num_return_sequences= gr.Slider(label="Return Sequence", minimum=0.1, maximum=50, value=1, step=0.1)
top_p= gr.Slider(label="top p", minimum=0.1, maximum=1, value=0.8, step=0.1)
no_repeat_ngram_size= gr.Slider(label="repeat", minimum=0.1, maximum=1, value=3, step=0.1)
# Row 3 : Chat
with gr.Column(scale=2, min_width=600):
title2_gr = gr.Markdown(title2)
chatbot = gr.Chatbot(label="Bot", height=500)
msg = gr.Textbox(label="User", placeholder="Ask any question.")
### YOUR MODEL TO ADAPT
msg.submit(my_model,
inputs=[msg, chatbot, content_var,
language_choice, model_choice, max_length, temperature,
num_return_sequences, top_p, no_repeat_ngram_size],
outputs=[msg, chatbot]).then(queue_bot, chatbot, chatbot)
clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")
gr.close_all()
gradioApp.queue()
gradioApp.launch(share=True, auth=("neovision", "gradio2023"))
#auth=("neovision", "gradio2023") to be placed inside the launch parameters |