NeuralFalcon's picture
Update app.py
74a5eb3 verified
# Initalize a pipeline
from kokoro import KPipeline
# from IPython.display import display, Audio
# import soundfile as sf
import os
from huggingface_hub import list_repo_files
import uuid
import re
import gradio as gr
#translate langauge
from deep_translator import GoogleTranslator
language_map_local = {
"American English": "en",
"British English": "en",
"Hindi": "hi",
"Spanish": "es",
"French": "fr",
"Italian": "it",
"Brazilian Portuguese": "pt",
"Japanese": "ja",
"Mandarin Chinese": "zh-CN"
}
def bulk_translate(text, target_language, chunk_size=500,MAX_ALLOWED_CHARACTERS = 10000):
if len(text)>=MAX_ALLOWED_CHARACTERS:
gr.Warning("[WARNING] Text too long — skipping translation to prevent Google Translate abuse.")
return text
# language_map_local = {
# "American English": "en",
# "British English": "en",
# "Hindi": "hi",
# "Spanish": "es",
# "French": "fr",
# "Italian": "it",
# "Brazilian Portuguese": "pt",
# "Japanese": "ja",
# "Mandarin Chinese": "zh-CN"
# }
# lang_code = GoogleTranslator().get_supported_languages(as_dict=True).get(target_language.lower())
lang_code=language_map_local[target_language]
sentences = re.split(r'(?<=[.!?])\s+', text) # Split text into sentences
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) <= chunk_size:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
translated_chunks = [GoogleTranslator(target=lang_code).translate(chunk) for chunk in chunks]
result=" ".join(translated_chunks)
return result.strip()
# Language mapping dictionary
language_map = {
"American English": "a",
"British English": "b",
"Hindi": "h",
"Spanish": "e",
"French": "f",
"Italian": "i",
"Brazilian Portuguese": "p",
"Japanese": "j",
"Mandarin Chinese": "z"
}
def update_pipeline(Language):
""" Updates the pipeline only if the language has changed. """
global pipeline, last_used_language
# Get language code, default to 'a' if not found
new_lang = language_map.get(Language, "a")
# Only update if the language is different
if new_lang != last_used_language:
pipeline = KPipeline(lang_code=new_lang)
last_used_language = new_lang
try:
pipeline = KPipeline(lang_code=new_lang)
last_used_language = new_lang # Update last used language
except Exception as e:
gr.Warning(f"Make sure the input text is in {Language}",duration=10)
gr.Warning(f"Fallback to English Language",duration=5)
pipeline = KPipeline(lang_code="a") # Fallback to English
last_used_language = "a"
def get_voice_names(repo_id):
"""Fetches and returns a list of voice names (without extensions) from the given Hugging Face repository."""
return [os.path.splitext(file.replace("voices/", ""))[0] for file in list_repo_files(repo_id) if file.startswith("voices/")]
def create_audio_dir():
"""Creates the 'kokoro_audio' directory in the root folder if it doesn't exist."""
root_dir = os.getcwd() # Use current working directory instead of __file__
audio_dir = os.path.join(root_dir, "kokoro_audio")
if not os.path.exists(audio_dir):
os.makedirs(audio_dir)
print(f"Created directory: {audio_dir}")
else:
print(f"Directory already exists: {audio_dir}")
return audio_dir
import re
def clean_text(text):
# Define replacement rules
replacements = {
"–": " ", # Replace en-dash with space
"-": " ", # Replace hyphen with space
"**": " ", # Replace double asterisks with space
"*": " ", # Replace single asterisk with space
"#": " ", # Replace hash with space
}
# Apply replacements
for old, new in replacements.items():
text = text.replace(old, new)
# Remove emojis using regex (covering wide range of Unicode characters)
emoji_pattern = re.compile(
r'[\U0001F600-\U0001F64F]|' # Emoticons
r'[\U0001F300-\U0001F5FF]|' # Miscellaneous symbols and pictographs
r'[\U0001F680-\U0001F6FF]|' # Transport and map symbols
r'[\U0001F700-\U0001F77F]|' # Alchemical symbols
r'[\U0001F780-\U0001F7FF]|' # Geometric shapes extended
r'[\U0001F800-\U0001F8FF]|' # Supplemental arrows-C
r'[\U0001F900-\U0001F9FF]|' # Supplemental symbols and pictographs
r'[\U0001FA00-\U0001FA6F]|' # Chess symbols
r'[\U0001FA70-\U0001FAFF]|' # Symbols and pictographs extended-A
r'[\U00002702-\U000027B0]|' # Dingbats
r'[\U0001F1E0-\U0001F1FF]' # Flags (iOS)
r'', flags=re.UNICODE)
text = emoji_pattern.sub(r'', text)
# Remove multiple spaces and extra line breaks
text = re.sub(r'\s+', ' ', text).strip()
return text
def tts_file_name(text,language):
global temp_folder
# Remove all non-alphabetic characters and convert to lowercase
text = re.sub(r'[^a-zA-Z\s]', '', text) # Retain only alphabets and spaces
text = text.lower().strip() # Convert to lowercase and strip leading/trailing spaces
text = text.replace(" ", "_") # Replace spaces with underscores
language=language.replace(" ", "_").strip()
# Truncate or handle empty text
truncated_text = text[:20] if len(text) > 20 else text if len(text) > 0 else language
# Generate a random string for uniqueness
random_string = uuid.uuid4().hex[:8].upper()
# Construct the file name
file_name = f"{temp_folder}/{truncated_text}_{random_string}.wav"
return file_name
# import soundfile as sf
import numpy as np
import wave
from pydub import AudioSegment
from pydub.silence import split_on_silence
def remove_silence_function(file_path,minimum_silence=50):
# Extract file name and format from the provided path
output_path = file_path.replace(".wav", "_no_silence.wav")
audio_format = "wav"
# Reading and splitting the audio file into chunks
sound = AudioSegment.from_file(file_path, format=audio_format)
audio_chunks = split_on_silence(sound,
min_silence_len=100,
silence_thresh=-45,
keep_silence=minimum_silence)
# Putting the file back together
combined = AudioSegment.empty()
for chunk in audio_chunks:
combined += chunk
combined.export(output_path, format=audio_format)
return output_path
def generate_and_save_audio(text, Language="American English",voice="af_bella", speed=1,remove_silence=False,keep_silence_up_to=0.05):
text=clean_text(text)
update_pipeline(Language)
generator = pipeline(text, voice=voice, speed=speed, split_pattern=r'\n+')
save_path=tts_file_name(text,Language)
# Open the WAV file for writing
timestamps={}
with wave.open(save_path, 'wb') as wav_file:
# Set the WAV file parameters
wav_file.setnchannels(1) # Mono audio
wav_file.setsampwidth(2) # 2 bytes per sample (16-bit audio)
wav_file.setframerate(24000) # Sample rate
for i, result in enumerate(generator):
gs = result.graphemes # str
# print(f"\n{i}: {gs}")
ps = result.phonemes # str
# audio = result.audio.cpu().numpy()
audio = result.audio
tokens = result.tokens # List[en.MToken]
timestamps[i]={"text":gs,"words":[]}
if Language in ["American English", "British English"]:
for t in tokens:
# print(t.text, repr(t.whitespace), t.start_ts, t.end_ts)
timestamps[i]["words"].append({"word":t.text,"start":t.start_ts,"end":t.end_ts})
audio_np = audio.numpy() # Convert Tensor to NumPy array
audio_int16 = (audio_np * 32767).astype(np.int16) # Scale to 16-bit range
audio_bytes = audio_int16.tobytes() # Convert to bytes
# Write the audio chunk to the WAV file
duration_sec = len(audio_np) / 24000
timestamps[i]["duration"] = duration_sec
wav_file.writeframes(audio_bytes)
if remove_silence:
keep_silence = int(keep_silence_up_to * 1000)
new_wave_file=remove_silence_function(save_path,minimum_silence=keep_silence)
return new_wave_file,timestamps
return save_path,timestamps
def adjust_timestamps(timestamp_dict):
adjusted_timestamps = []
last_global_end = 0 # Cumulative audio timeline
for segment_id in sorted(timestamp_dict.keys()):
segment = timestamp_dict[segment_id]
words = segment["words"]
chunk_duration = segment["duration"]
# If there are valid words, get last word end
last_word_end_in_chunk = (
max(w["end"] for w in words if w["end"] not in [None, 0])
if words else 0
)
silence_gap = chunk_duration - last_word_end_in_chunk
if silence_gap < 0: # In rare cases where end > duration (due to rounding)
silence_gap = 0
for word in words:
start = word["start"] or 0
end = word["end"] or start
adjusted_timestamps.append({
"word": word["word"],
"start": round(last_global_end + start, 3),
"end": round(last_global_end + end, 3)
})
# Add entire chunk duration to global end
last_global_end += chunk_duration
return adjusted_timestamps
import string
def write_word_srt(word_level_timestamps, output_file="word.srt", skip_punctuation=True):
with open(output_file, "w", encoding="utf-8") as f:
index = 1 # Track subtitle numbering separately
for entry in word_level_timestamps:
word = entry["word"]
# Skip punctuation if enabled
if skip_punctuation and all(char in string.punctuation for char in word):
continue
start_time = entry["start"]
end_time = entry["end"]
# Convert seconds to SRT time format (HH:MM:SS,mmm)
def format_srt_time(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
sec = int(seconds % 60)
millisec = int((seconds % 1) * 1000)
return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}"
start_srt = format_srt_time(start_time)
end_srt = format_srt_time(end_time)
# Write entry to SRT file
f.write(f"{index}\n{start_srt} --> {end_srt}\n{word}\n\n")
index += 1 # Increment subtitle number
import string
def split_line_by_char_limit(text, max_chars=30):
words = text.split()
lines = []
current_line = ""
for word in words:
if len(current_line + " " + word) <= max_chars:
current_line = (current_line + " " + word).strip()
else:
lines.append(current_line)
current_line = word
if current_line:
# Check if last line is a single word and there is a previous line
if len(current_line.split()) == 1 and len(lines) > 0:
# Append single word to previous line
lines[-1] += " " + current_line
else:
lines.append(current_line)
return "\n".join(lines)
def write_sentence_srt(word_level_timestamps, output_file="subtitles.srt", max_words=8, min_pause=0.1):
subtitles = [] # Stores subtitle blocks
subtitle_words = [] # Temporary list for words in the current subtitle
start_time = None # Tracks start time of current subtitle
remove_punctuation = ['"',"—"] # Add punctuations to remove if needed
for i, entry in enumerate(word_level_timestamps):
word = entry["word"]
word_start = entry["start"]
word_end = entry["end"]
# Skip selected punctuation from remove_punctuation list
if word in remove_punctuation:
continue
# Attach punctuation to the previous word
if word in string.punctuation:
if subtitle_words:
subtitle_words[-1] = (subtitle_words[-1][0] + word, subtitle_words[-1][1])
continue
# Start a new subtitle block if needed
if start_time is None:
start_time = word_start
# Calculate pause duration if this is not the first word
if subtitle_words:
last_word_end = subtitle_words[-1][1]
pause_duration = word_start - last_word_end
else:
pause_duration = 0
# **NEW FIX:** If pause is too long, create a new subtitle but ensure continuity
if (word.endswith(('.', '!', '?')) and len(subtitle_words) >= 5) or len(subtitle_words) >= max_words or pause_duration > min_pause:
end_time = subtitle_words[-1][1] # Use last word's end time
subtitle_text = " ".join(w[0] for w in subtitle_words)
subtitles.append((start_time, end_time, subtitle_text))
# Reset for the next subtitle, but **ensure continuity**
subtitle_words = [(word, word_end)] # **Carry the current word to avoid delay**
start_time = word_start # **Start at the current word, not None**
continue # Avoid adding the word twice
# Add the current word to the subtitle
subtitle_words.append((word, word_end))
# Ensure last subtitle is added if anything remains
if subtitle_words:
end_time = subtitle_words[-1][1]
subtitle_text = " ".join(w[0] for w in subtitle_words)
subtitles.append((start_time, end_time, subtitle_text))
# Function to format SRT timestamps
def format_srt_time(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
sec = int(seconds % 60)
millisec = int((seconds % 1) * 1000)
return f"{hours:02}:{minutes:02}:{sec:02},{millisec:03}"
# Write subtitles to SRT file
with open(output_file, "w", encoding="utf-8") as f:
for i, (start, end, text) in enumerate(subtitles, start=1):
text=split_line_by_char_limit(text, max_chars=30)
f.write(f"{i}\n{format_srt_time(start)} --> {format_srt_time(end)}\n{text}\n\n")
# print(f"SRT file '{output_file}' created successfully!")
import json
import re
def fix_punctuation(text):
# Remove spaces before punctuation marks (., ?, !, ,)
text = re.sub(r'\s([.,?!])', r'\1', text)
# Handle quotation marks: remove spaces before and after them
text = text.replace('" ', '"')
text = text.replace(' "', '"')
text = text.replace('" ', '"')
# Track quotation marks to add space after closing quotes
track = 0
result = []
for index, char in enumerate(text):
if char == '"':
track += 1
result.append(char)
# If it's a closing quote (even number of quotes), add a space after it
if track % 2 == 0:
result.append(' ')
else:
result.append(char)
text=''.join(result)
return text.strip()
def make_json(word_timestamps, json_file_name):
data = {}
temp = []
inside_quote = False # Track if we are inside a quoted sentence
start_time = word_timestamps[0]['start'] # Initialize with the first word's start time
end_time = word_timestamps[0]['end'] # Initialize with the first word's end time
words_in_sentence = []
sentence_id = 0 # Initialize sentence ID
# Process each word in word_timestamps
for i, word_data in enumerate(word_timestamps):
word = word_data['word']
word_start = word_data['start']
word_end = word_data['end']
# Collect word info for JSON
words_in_sentence.append({'word': word, 'start': word_start, 'end': word_end})
# Update the end_time for the sentence based on the current word
end_time = word_end
# Properly handle opening and closing quotation marks
if word == '"':
if inside_quote:
temp[-1] += '"' # Attach closing quote to the last word
else:
temp.append('"') # Keep opening quote as a separate entry
inside_quote = not inside_quote # Toggle inside_quote state
else:
temp.append(word)
# Check if this is a sentence-ending punctuation
if word.endswith(('.', '?', '!')) and not inside_quote:
# Ensure the next word is NOT a dialogue tag before finalizing the sentence
if i + 1 < len(word_timestamps):
next_word = word_timestamps[i + 1]['word']
if next_word[0].islower(): # Likely a dialogue tag like "he said"
continue # Do not break the sentence yet
# Store the full sentence for JSON and reset word collection for next sentence
sentence = " ".join(temp)
sentence = fix_punctuation(sentence) # Fix punctuation in the sentence
data[sentence_id] = {
'text': sentence,
'duration': end_time - start_time,
'start': start_time,
'end': end_time,
'words': words_in_sentence
}
# Reset for the next sentence
temp = []
words_in_sentence = []
start_time = word_data['start'] # Update the start time for the next sentence
sentence_id += 1 # Increment sentence ID
# Handle any remaining words if necessary
if temp:
sentence = " ".join(temp)
sentence = fix_punctuation(sentence) # Fix punctuation in the sentence
data[sentence_id] = {
'text': sentence,
'duration': end_time - start_time,
'start': start_time,
'end': end_time,
'words': words_in_sentence
}
# Write data to JSON file
with open(json_file_name, 'w') as json_file:
json.dump(data, json_file, indent=4)
return json_file_name
import os
def modify_filename(save_path: str, prefix: str = ""):
directory, filename = os.path.split(save_path)
name, ext = os.path.splitext(filename)
new_filename = f"{prefix}{name}{ext}"
return os.path.join(directory, new_filename)
import shutil
def save_current_data():
if os.path.exists("./last"):
shutil.rmtree("./last")
os.makedirs("./last",exist_ok=True)
def KOKORO_TTS_API(text, Language="American English",voice="af_bella", speed=1,translate_text=False,remove_silence=False,keep_silence_up_to=0.05):
if translate_text:
text=bulk_translate(text, Language, chunk_size=500)
save_path,timestamps=generate_and_save_audio(text=text, Language=Language,voice=voice, speed=speed,remove_silence=remove_silence,keep_silence_up_to=keep_silence_up_to)
if remove_silence==False:
if Language in ["American English", "British English"]:
word_level_timestamps=adjust_timestamps(timestamps)
word_level_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="word_level_")
normal_srt = modify_filename(save_path.replace(".wav", ".srt"), prefix="sentence_")
json_file = modify_filename(save_path.replace(".wav", ".json"), prefix="duration_")
write_word_srt(word_level_timestamps, output_file=word_level_srt, skip_punctuation=True)
write_sentence_srt(word_level_timestamps, output_file=normal_srt, min_pause=0.01)
make_json(word_level_timestamps, json_file)
save_current_data()
shutil.copy(save_path, "./last/")
shutil.copy(word_level_srt, "./last/")
shutil.copy(normal_srt, "./last/")
shutil.copy(json_file, "./last/")
return save_path,save_path,word_level_srt,normal_srt,json_file
return save_path,save_path,None,None,None
def toggle_autoplay(autoplay):
return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
lang_list = ['American English', 'British English', 'Hindi', 'Spanish', 'French', 'Italian', 'Brazilian Portuguese', 'Japanese', 'Mandarin Chinese']
voice_names = get_voice_names("hexgrad/Kokoro-82M")
def ui():
# Define examples in the format you mentioned
dummy_examples = [
["Hey, y'all, let’s grab some coffee and catch up!", "American English", "af_bella"],
["I'd like a large coffee, please.", "British English", "bf_isabella"],
["नमस्ते, कैसे हो?", "Hindi", "hf_alpha"],
["Hola, ¿cómo estás?", "Spanish", "ef_dora"],
["Bonjour, comment ça va?", "French", "ff_siwis"],
["Ciao, come stai?", "Italian", "if_sara"],
["Olá, como você está?", "Brazilian Portuguese", "pf_dora"],
["こんにちは、お元気ですか?", "Japanese", "jf_nezumi"],
["你好,你怎么样?", "Mandarin Chinese", "zf_xiaoni"]
]
with gr.Blocks() as demo:
# gr.Markdown("<center><h1 style='font-size: 40px;'>KOKORO TTS</h1></center>") # Larger title with CSS
gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/Kokoro-TTS-Subtitle)")
with gr.Row():
with gr.Column():
text = gr.Textbox(label='📝 Enter Text', lines=3)
with gr.Row():
language_name = gr.Dropdown(lang_list, label="🌍 Select Language", value=lang_list[0])
with gr.Row():
voice_name = gr.Dropdown(voice_names, label="🎙️ Choose VoicePack", value='af_heart')#voice_names[0])
with gr.Row():
generate_btn = gr.Button('🚀 Generate', variant='primary')
with gr.Accordion('🎛️ Audio Settings', open=False):
speed = gr.Slider(minimum=0.25, maximum=2, value=1, step=0.1, label='⚡️Speed', info='Adjust the speaking speed')
translate_text = gr.Checkbox(value=False, label='🌐 Translate Text to Selected Language')
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
with gr.Column():
audio = gr.Audio(interactive=False, label='🔊 Output Audio', autoplay=True)
audio_file = gr.File(label='📥 Download Audio')
# word_level_srt_file = gr.File(label='Download Word-Level SRT')
# srt_file = gr.File(label='Download Sentence-Level SRT')
# sentence_duration_file = gr.File(label='Download Sentence Duration JSON')
with gr.Accordion('🎬 Autoplay, Subtitle, Timestamp', open=False):
autoplay = gr.Checkbox(value=True, label='▶️ Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
word_level_srt_file = gr.File(label='📝 Download Word-Level SRT')
srt_file = gr.File(label='📜 Download Sentence-Level SRT')
sentence_duration_file = gr.File(label='⏳ Download Sentence Timestamp JSON')
text.submit(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file])
generate_btn.click(KOKORO_TTS_API, inputs=[text, language_name, voice_name, speed,translate_text, remove_silence], outputs=[audio, audio_file,word_level_srt_file,srt_file,sentence_duration_file])
# Add examples to the interface
gr.Examples(examples=dummy_examples, inputs=[text, language_name, voice_name])
return demo
def tutorial():
# Markdown explanation for language code
explanation = """
## Language Code Explanation:
Example: `'af_bella'`
- **'a'** stands for **American English**.
- **'f_'** stands for **Female** (If it were 'm_', it would mean Male).
- **'bella'** refers to the specific voice.
The first character in the voice code stands for the language:
- **"a"**: American English
- **"b"**: British English
- **"h"**: Hindi
- **"e"**: Spanish
- **"f"**: French
- **"i"**: Italian
- **"p"**: Brazilian Portuguese
- **"j"**: Japanese
- **"z"**: Mandarin Chinese
The second character stands for gender:
- **"f_"**: Female
- **"m_"**: Male
"""
with gr.Blocks() as demo2:
# gr.Markdown("[Install on Your Local System](https://github.com/NeuralFalconYT/kokoro_v1)")
gr.Markdown(explanation) # Display the explanation
return demo2
#@title subtitle
import os
import re
import uuid
import shutil
import platform
import datetime
import subprocess
import pysrt
import librosa
import soundfile as sf
from tqdm.auto import tqdm
from pydub import AudioSegment
from deep_translator import GoogleTranslator
# ---------------------- Utility Functions ----------------------
def get_current_time():
return datetime.datetime.now().strftime("%I_%M_%p")
def get_subtitle_Dub_path(srt_file_path, Language):
file_name = os.path.splitext(os.path.basename(srt_file_path))[0]
full_base_path = os.path.join(os.getcwd(), "TTS_DUB")
os.makedirs(full_base_path, exist_ok=True)
random_string = str(uuid.uuid4())[:6]
lang = language_map_local.get(Language, Language.replace(" ", "_"))
new_path = os.path.join(full_base_path, f"{file_name}_{lang}_{random_string}.wav")
return new_path.replace("__", "_")
def clean_srt(input_path):
def clean_srt_line(text):
for bad in ["[", "]", "♫"]:
text = text.replace(bad, "")
return text.strip()
subs = pysrt.open(input_path, encoding='utf-8')
output_path = input_path.lower().replace(".srt", "") + "_.srt"
with open(output_path, "w", encoding='utf-8') as file:
for sub in subs:
file.write(f"{sub.index}\n{sub.start} --> {sub.end}\n{clean_srt_line(sub.text)}\n\n")
return output_path
def translate_srt(input_path, target_language="Hindi", max_segments=500, chunk_size=4000):
output_path = input_path.replace(".srt", f"{target_language}.srt")
subs = pysrt.open(input_path, encoding='utf-8')
if len(subs) > max_segments:
gr.Warning(f"Too many segments: {len(subs)} > {max_segments}. Skipping translation.")
return input_path
original = [f"<#{i}>{s.text}" for i, s in enumerate(subs)]
full_text = "\n".join(original)
chunks, start = [], 0
while start < len(full_text):
end = start + chunk_size
split_point = full_text.rfind("<#", start, end) if end < len(full_text) else len(full_text)
chunks.append(full_text[start:split_point])
start = split_point
lang_code = language_map_local.get(target_language, "en")
translated_chunks = [GoogleTranslator(target=lang_code).translate(chunk) for chunk in chunks]
translated_text = "\n".join(translated_chunks)
pattern = re.compile(r"<#(\d+)>(.*?)(?=<#\d+>|$)", re.DOTALL)
translated_dict = {int(i): txt.strip() for i, txt in pattern.findall(translated_text)}
for i, sub in enumerate(subs):
sub.text = translated_dict.get(i, sub.text)
subs.save(output_path, encoding='utf-8')
return output_path
def prepare_srt(srt_path, target_language, translate=False):
path = clean_srt(srt_path)
return translate_srt(path, target_language) if translate else path
def is_ffmpeg_installed():
ffmpeg_exe = "ffmpeg.exe" if platform.system() == "Windows" else "ffmpeg"
try:
subprocess.run([ffmpeg_exe, "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return True, ffmpeg_exe
except Exception:
gr.Warning("FFmpeg not found. Falling back to librosa for audio speedup.", duration=20)
return False, ffmpeg_exe
def speedup_audio_librosa(input_file, output_file, speedup_factor):
try:
y, sr = librosa.load(input_file, sr=None)
y_stretched = librosa.effects.time_stretch(y, rate=speedup_factor)
sf.write(output_file, y_stretched, sr)
except Exception as e:
gr.Warning(f"Librosa speedup failed: {e}")
shutil.copy(input_file, output_file)
def change_speed(input_file, output_file, speedup_factor, use_ffmpeg, ffmpeg_path):
if use_ffmpeg:
try:
subprocess.run([ffmpeg_path, "-i", input_file, "-filter:a", f"atempo={speedup_factor}", output_file, "-y"], check=True)
except Exception as e:
gr.Error(f"FFmpeg speedup error: {e}")
speedup_audio_librosa(input_file, output_file, speedup_factor)
else:
speedup_audio_librosa(input_file, output_file, speedup_factor)
def remove_edge_silence(input_path, output_path):
y, sr = librosa.load(input_path, sr=None)
trimmed_audio, _ = librosa.effects.trim(y, top_db=30)
sf.write(output_path, trimmed_audio, sr)
return output_path
# ---------------------- Main Class ----------------------
class SRTDubbing:
def __init__(self, use_ffmpeg=True, ffmpeg_path="ffmpeg"):
self.use_ffmpeg = use_ffmpeg
self.ffmpeg_path = ffmpeg_path
self.cache_dir = "./cache"
os.makedirs("./dummy", exist_ok=True)
os.makedirs(self.cache_dir, exist_ok=True)
@staticmethod
def convert_to_millisecond(t):
return t.hours * 3600000 + t.minutes * 60000 + t.seconds * 1000 + int(t.milliseconds)
@staticmethod
def read_srt_file(file_path):
subs = pysrt.open(file_path, encoding='utf-8')
entries = []
prev_end = 0
for idx, sub in enumerate(subs, 1):
start, end = SRTDubbing.convert_to_millisecond(sub.start), SRTDubbing.convert_to_millisecond(sub.end)
pause = start - prev_end if idx > 1 else start
entries.append({
'entry_number': idx,
'start_time': start,
'end_time': end,
'text': sub.text.strip(),
'pause_time': pause,
'audio_name': f"{idx}.wav",
'previous_pause': f"{idx}_before_pause.wav",
})
prev_end = end
return entries
def text_to_speech_srt(self, text, audio_path, language, voice, actual_duration):
temp = "./cache/temp.wav"
# Step 1: Generate initial audio
path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=1, remove_silence=False, keep_silence_up_to=0.05)
# ✂️ Remove leading and trailing silence to make timing tight without trimming actual speech.
remove_edge_silence(path, temp)
# 📏 Load the trimmed audio and get its duration in milliseconds.
audio = AudioSegment.from_file(temp)
# ⏱️ If no duration is specified (edge case), use the TTS as-is without speed/timing adjustments.
if actual_duration == 0:
shutil.move(temp, audio_path)
return
# Step 2: If TTS audio is longer, retry with remove_silence=True
if len(audio) > actual_duration:
path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=1, remove_silence=True, keep_silence_up_to=0.05)
remove_edge_silence(path, temp)
audio = AudioSegment.from_file(temp)
# Step 3: If still longer → speed up
if len(audio) > actual_duration:
factor = len(audio) / actual_duration
path, _ = generate_and_save_audio(text, Language=language, voice=voice, speed=factor, remove_silence=True, keep_silence_up_to=0.05)
remove_edge_silence(path, temp)
audio = AudioSegment.from_file(temp)
# Final Adjustment: Speed up via FFmpeg or librosa
if len(audio) > actual_duration:
factor = len(audio) / actual_duration
final_temp = "./cache/speedup_temp.wav"
change_speed(temp, final_temp, factor, self.use_ffmpeg, self.ffmpeg_path)
shutil.move(final_temp, audio_path)
# Add silence if too short
elif len(audio) < actual_duration:
silence = AudioSegment.silent(duration=actual_duration - len(audio))
(audio + silence).export(audio_path, format="wav")
# ➡️ Fallback: If TTS already perfectly matches subtitle duration, save as-is.
else:
shutil.move(temp, audio_path) #bad code
@staticmethod
def make_silence(duration, path):
AudioSegment.silent(duration=duration).export(path, format="wav")
@staticmethod
def create_folder_for_srt(srt_file_path):
base = os.path.splitext(os.path.basename(srt_file_path))[0]
folder = f"./dummy/{base}_{str(uuid.uuid4())[:4]}"
os.makedirs(folder, exist_ok=True)
return folder
@staticmethod
def concatenate_audio_files(paths, output):
audio = sum([AudioSegment.from_file(p) for p in paths], AudioSegment.silent(duration=0))
audio.export(output, format="wav")
def srt_to_dub(self, srt_path, output_path, language, voice):
entries = self.read_srt_file(srt_path)
folder = self.create_folder_for_srt(srt_path)
all_audio = []
for entry in tqdm(entries):
self.make_silence(entry['pause_time'], os.path.join(folder, entry['previous_pause']))
all_audio.append(os.path.join(folder, entry['previous_pause']))
tts_path = os.path.join(folder, entry['audio_name'])
self.text_to_speech_srt(entry['text'], tts_path, language, voice, entry['end_time'] - entry['start_time'])
all_audio.append(tts_path)
self.concatenate_audio_files(all_audio, output_path)
# ---------------------- Entrypoint ----------------------
def srt_process(srt_path, Language="American English", voice_name="af_bella", translate=False):
if not srt_path.endswith(".srt"):
gr.Error("Please upload a valid .srt file", duration=5)
return None
use_ffmpeg, ffmpeg_path = is_ffmpeg_installed()
processed_srt = prepare_srt(srt_path, Language, translate)
output_path = get_subtitle_Dub_path(srt_path, Language)
SRTDubbing(use_ffmpeg, ffmpeg_path).srt_to_dub(processed_srt, output_path, Language, voice_name)
return output_path,output_path
def subtitle_ui():
with gr.Blocks() as demo:
gr.Markdown(
"""
# Generate Audio File From Subtitle [Upload Only .srt file]
To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle)
"""
)
with gr.Row():
with gr.Column():
srt_file = gr.File(label='Upload .srt Subtitle File Only')
# with gr.Row():
language_name = gr.Dropdown(lang_list, label="🌍 Select Language", value=lang_list[0])
# with gr.Row():
voice = gr.Dropdown(
voice_names,
value='af_bella',
allow_custom_value=False,
label='🎙️ Choose VoicePack',
)
with gr.Row():
generate_btn_ = gr.Button('Generate', variant='primary')
with gr.Accordion('Other Settings', open=False):
translate_text = gr.Checkbox(value=False, label='🌐 Translate Subtitle to Selected Language')
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
audio_file = gr.File(label='📥 Download Audio')
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
# srt_file.submit(
# srt_process,
# inputs=[srt_file, voice],
# outputs=[audio]
# )
generate_btn_.click(
srt_process,
inputs=[srt_file,language_name,voice,translate_text],
outputs=[audio,audio_file]
)
return demo
# Example usage:
# srt_file_path = "/content/me.srt"
# dub_audio_path = srt_process(srt_file_path, Language="American English", voice_name="af_bella", translate=False)
# print(f"Audio file saved at: {dub_audio_path}")
import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
# def main(debug=True, share=True):
demo1 = ui()
demo2 = subtitle_ui()
demo3 = tutorial()
demo = gr.TabbedInterface([demo1, demo2,demo3],["Multilingual TTS","SRT Dubbing","VoicePack Explanation"],title="Kokoro TTS")#,theme='JohnSmith9982/small_and_pretty')
demo.queue().launch(debug=debug, share=share)
# demo.queue().launch(debug=debug, share=share,server_port=9000)
#Run on local network
# laptop_ip="192.168.0.30"
# port=8080
# demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)
# Initialize default pipeline
last_used_language = "a"
pipeline = KPipeline(lang_code=last_used_language)
temp_folder = create_audio_dir()
if __name__ == "__main__":
main()