Meta-Watermark-Remover / create_mask.py
NeuralFalcon's picture
Upload 4 files
205273a verified
import numpy as np
import cv2
from config import RESIZE_TO, MASKIMAGE
# image mask
# free form mask
# bbox mask
def create_ff_mask():
config = {
"img_shape": list(RESIZE_TO),
"mv": 15,
"ma": 4.0,
"ml": 40,
"mbw": 5,
}
h, w = config["img_shape"]
mask = np.zeros((h, w))
num_v = np.random.randint(config["mv"])
for i in range(num_v):
start_x = np.random.randint(w)
start_y = np.random.randint(h)
for j in range(1 + np.random.randint(5)):
angle = 0.01 + np.random.randint(config["ma"])
if i % 2 == 0:
angle = 2 * 3.1415926 - angle
length = 10 + np.random.randint(config["ml"])
brush_w = 5 + np.random.randint(config["mbw"])
end_x = (start_x + length * np.sin(angle)).astype(np.int32)
end_y = (start_y + length * np.cos(angle)).astype(np.int32)
cv2.line(mask, (start_y, start_x), (end_y, end_x), 255.0, brush_w)
start_x, start_y = end_x, end_y
mask = mask.astype(np.uint8)
cv2.imwrite(MASKIMAGE, mask)
def create_bbox_mask():
shape = list(RESIZE_TO)
margin = [10, 10]
bbox_shape = [30, 30]
def random_bbox(shape, margin, bbox_shape):
"""Generate a random tlhw with configuration.
Args:
config: Config should have configuration including IMG_SHAPES,
VERTICAL_MARGIN, HEIGHT, HORIZONTAL_MARGIN, WIDTH.
Returns:
tuple: (top, left, height, width)
"""
img_height, img_width = shape
height, width = bbox_shape
ver_margin, hor_margin = margin
maxt = img_height - ver_margin - height
maxl = img_width - hor_margin - width
t = np.random.randint(low=ver_margin, high=maxt)
l = np.random.randint(low=hor_margin, high=maxl)
h = height
w = width
return (t, l, h, w)
bboxs = []
for i in range(20):
bbox = random_bbox(shape, margin, bbox_shape)
bboxs.append(bbox)
height, width = shape
mask = np.zeros((height, width), np.float32)
# print(mask.shape)
for bbox in bboxs:
h = int(bbox[2] * 0.1) + np.random.randint(int(bbox[2] * 0.2 + 1))
w = int(bbox[3] * 0.1) + np.random.randint(int(bbox[3] * 0.2) + 1)
mask[
(bbox[0] + h) : (bbox[0] + bbox[2] - h),
(bbox[1] + w) : (bbox[1] + bbox[3] - w),
] = 255.0
mask = mask.astype(np.uint8)
cv2.imwrite(MASKIMAGE, mask)