File size: 3,608 Bytes
8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 eb8e92b 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 a324e60 8b42472 83c7d4f f447392 8b42472 a324e60 8b42472 a324e60 8b42472 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline, AutoencoderKL
device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
refiner_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
base_pipeline = DiffusionPipeline.from_pretrained(
base_model_id,
torch_dtype = torch.float16,
variant = "fp16",
use_safetensors = True
).to(device)
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
refiner_id,
text_encoder_2 = base_pipeline.text_encoder_2,
vae = vae,
torch_dtype = torch.float16,
variant = "fp16",
use_safetensors = True
).to(device)
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
@spaces.GPU(duration=59)
def generate(
prompt,
negative_prompt,
num_inference_steps,
denoising_switch,
width, height,
guidance_scale
):
base_processed_image = base_pipeline(
prompt = prompt,
negative_prompt = negative_prompt,
num_inference_steps = num_inference_steps,
denoising_end = denoising_switch,
width = width,
height = height,
guidance_scale = guidance_scale,
output_type = "latent"
).images
generated_image = refiner(
prompt = prompt,
negative_prompt = negative_prompt,
num_inference_steps = num_inference_steps,
denoising_start = denoising_switch,
width = width,
height = height,
guidance_scale = guidance_scale,
image = base_processed_image
).images[0]
return generated_image
def create_ui():
with gr.Blocks() as demo:
with gr.Row():
base_model = gr.Radio(label="Base model", choices=[base_model_id], value=base_model_id, interactive=False)
refiner_model = gr.Radio(label="Refiner model", choices=[refiner_id], value=refiner_id, interactive=False)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=3)
negative_prompt = gr.Textbox(label="Negative Prompt", lines=3, value="low quality, bad quality")
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=30)
denoising_switch = gr.Slider(label="Denoising Switch", minimum=0.01, maximum=1, step=0.01, value=0.8)
width = gr.Slider(label="Width", minimum=64, maximum=2048, step=16, value=1024)
height = gr.Slider(label="Height", minimum=64, maximum=2048, step=16, value=1024)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.1, maximum=30, step=0.1, value=7.5)
with gr.Column():
output_image = gr.Image(interactive=False)
generate_button = gr.Button("Run", variant="primary")
generate_button.click(
generate,
inputs=[
prompt,
negative_prompt,
num_inference_steps,
denoising_switch,
width, height,
guidance_scale
],
outputs=[output_image]
)
return demo
if __name__ == "__main__":
gradio_app = create_ui()
gradio_app.launch(
share = True
) |