File size: 8,633 Bytes
4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 743be46 4b549a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import json
from collections import defaultdict
import openai
import re
from config import CFG_APP
from text_embedder import SentenceTransformersTextEmbedder
from datetime import datetime
import tiktoken
doc_metadata = json.load(open(CFG_APP.DOC_METADATA_PATH, "r"))
# Embedding Model
if "sentence-transformers" in CFG_APP.EMBEDDING_MODEL:
text_embedder = SentenceTransformersTextEmbedder(
model_name=CFG_APP.EMBEDDING_MODEL,
paragraphs_path=CFG_APP.DATA_FOLDER,
device=CFG_APP.DEVICE,
load_existing_index=True,
)
else:
raise ValueError("Embedding model not found !")
# Util Functions
def retrieve_doc_metadata(doc_metadata, doc_id):
for meta in doc_metadata:
if meta["id"] == doc_id:
return meta
def get_reformulation_prompt(query: str) -> list:
return [
{
"role": "user",
"content": f"""{CFG_APP.REFORMULATION_PROMPT}
---
query: {query}
standalone question: """,
}
]
def get_hyde_prompt(query: str) -> list:
return [
{
"role": "user",
"content": f"""{CFG_APP.HYDE_PROMPT}
---
query: {query}
output: """,
}
]
def make_pairs(lst):
"""From a list of even lenght, make tupple pairs
Args:
lst (list): a list of even lenght
Returns:
list: the list as tupple pairs
"""
assert not (l := len(lst) % 2), f"your list is of lenght {l} which is not even"
return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]
def make_html_source(paragraph, meta_doc, i):
content = paragraph["content"]
meta_paragraph = paragraph["meta"]
return f"""
<div class="card" id="document-{i}">
<div class="card-content">
<h2>Doc {i} - {meta_doc['short_name']} - Page {meta_paragraph['page_number']}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{meta_doc['short_name']}</span>
<a href="{meta_doc['url']}#page={meta_paragraph['page_number']}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">π</span>
</a>
</div>
</div>
"""
def preprocess_message(text: str, docs_url: dict) -> str:
return re.sub(
r"\[doc (\d+)\]",
lambda match: f'<a href="{docs_url[match.group(1)]}" target="_blank" class="pdf-link">{match.group(0)}</a>',
text,
)
def parse_glossary(query):
file = "glossary.json"
glossary = json.load(open(file, "r"))
words_query = query.split(" ")
for i, word in enumerate(words_query):
for key in glossary.keys():
if word.lower() == key.lower():
words_query[i] = words_query[i] + f" ({glossary[key]})"
return " ".join(words_query)
def num_tokens_from_string(string: str, encoding_name: str) -> int:
encoding = tiktoken.encoding_for_model(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def chat(
query: str,
history: list,
query_mode : str,
threshold: float = CFG_APP.THRESHOLD,
k_total: int = CFG_APP.K_TOTAL,
) -> tuple:
"""retrieve relevant documents in the document store then query gpt-turbo
Args:
query (str): user message.
history (list, optional): history of the conversation. Defaults to [system_template].
report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.
Yields:
tuple: chat gradio format, chat openai format, sources used.
"""
if query_mode == 'Reformulation':
reformulated_query = openai.ChatCompletion.create(
model=CFG_APP.MODEL_NAME,
messages=get_reformulation_prompt(parse_glossary(query)),
temperature=0,
max_tokens=CFG_APP.MAX_TOKENS_REF_QUESTION,
)
else :
reformulated_query = openai.ChatCompletion.create(
model=CFG_APP.MODEL_NAME,
messages=get_hyde_prompt(parse_glossary(query)),
temperature=0,
max_tokens=CFG_APP.MAX_TOKENS_REF_QUESTION,
)
reformulated_query = reformulated_query["choices"][0]["message"]["content"]
if len(reformulated_query.split("\n")) == 2:
reformulated_query, language = reformulated_query.split("\n")
language = language.split(":")[1].strip()
else:
reformulated_query = reformulated_query.split("\n")[0]
language = "English"
sources, scores = text_embedder.retrieve_faiss(
reformulated_query,
k_total=k_total,
threshold=threshold,
)
if CFG_APP.DEBUG == True:
print("Scores : \n", scores)
messages = history + [{"role": "user", "content": query}]
if query_mode == 'HYDE' :
reformulated_query = reformulated_query.split("?")[0] + '?'
docs_url = defaultdict(str)
if len(sources) > 0:
docs_string = []
docs_html = []
num_tokens = num_tokens_from_string(CFG_APP.SOURCES_PROMPT, CFG_APP.MODEL_NAME)
for i, data in enumerate(sources, 1):
meta_doc = retrieve_doc_metadata(doc_metadata, data["meta"]["document_id"])
doc_content = f"π Doc {i}: \n{data['content']}"
num_tokens_doc = num_tokens_from_string(doc_content, CFG_APP.MODEL_NAME)
if num_tokens + num_tokens_doc > CFG_APP.MAX_TOKENS_API:
break
num_tokens += num_tokens_doc
docs_string.append(doc_content)
docs_html.append(make_html_source(data, meta_doc, i))
url_doc = f'<a href="{meta_doc["url"]}#page={data["meta"]["page_number"]}" target="_blank" class="pdf-link">'
docs_url[i] = url_doc
docs_string = "\n\n".join(
[f"Query used for retrieval:\n{reformulated_query}"] + docs_string
)
docs_html = "\n\n".join(
[f"Query used for retrieval:\n{reformulated_query}"] + docs_html
)
messages.append(
{
"role": "system",
"content": f"{CFG_APP.SOURCES_PROMPT}\n\n{docs_string}\n\nAnswer in {language}:",
}
)
if CFG_APP.DEBUG == True:
print(f" π¨βπ» question asked by the user : {query}")
print(f" π time : {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(" π messages sent to the API :")
api_messages = [
{"role": "system", "content": CFG_APP.INIT_PROMPT},
{"role": "user", "content": reformulated_query},
{
"role": "system",
"content": f"{CFG_APP.SOURCES_PROMPT}\n\n{docs_string}\n\nAnswer in {language}:",
},
]
for message in api_messages:
print(
f"length : {len(message['content'])}, content : {message['content']}"
)
response = openai.ChatCompletion.create(
model=CFG_APP.MODEL_NAME,
messages=[
{"role": "system", "content": CFG_APP.INIT_PROMPT},
{"role": "user", "content": reformulated_query},
{
"role": "system",
"content": f"{CFG_APP.SOURCES_PROMPT}\n\n{docs_string}\n\nAnswer in {language}:",
},
],
temperature=0, # deterministic
stream=True,
max_tokens=CFG_APP.MAX_TOKENS_ANSWER,
)
complete_response = ""
messages.pop()
messages.append({"role": "assistant", "content": complete_response})
for chunk in response:
chunk_message = chunk["choices"][0]["delta"].get("content")
if chunk_message:
complete_response += chunk_message
complete_response = preprocess_message(complete_response, docs_url)
messages[-1]["content"] = complete_response
gradio_format = make_pairs([a["content"] for a in messages[1:]])
yield gradio_format, messages, docs_html
else:
docs_string = "β οΈ No relevant passages found in this report"
complete_response = "**β οΈ No relevant passages found in this report, you may want to ask a more specific question.**"
messages.append({"role": "assistant", "content": complete_response})
gradio_format = make_pairs([a["content"] for a in messages[1:]])
yield gradio_format, messages, docs_string
|