ESMA-GPT / processing.py
vnguyen-nexialog's picture
initial push
4b549a4
raw
history blame
6.54 kB
from abc import ABC, abstractmethod
from pathlib import Path
from urllib.parse import urlparse
import requests
import fitz
import io
import re
import hashlib
import os
class FileTypeError(Exception):
"""Raised when the file type does not match the expected file type."""
class FileSchemeError(Exception):
"""Raised when the file scheme does not match the expected file scheme."""
class FileProcessor(ABC):
type = None
def __init__(self, path):
self.path = path
self.file_scheme = self._get_file_scheme()
self.__class__._check_file_type(path)
@abstractmethod
def get_file_data(self):
pass
@abstractmethod
def _get_file_metadata(self):
pass
@abstractmethod
def _get_file_paragraphs(self):
pass
@classmethod
def _check_file_type(cls, path):
file_type = Path(path).suffix.lower()[1:]
if file_type != cls.type:
raise FileTypeError(
f"Invalid file type. {cls.__name__} expects a {cls.type} file"
)
def _get_file_scheme(self):
parsed_path = urlparse(self.path)
if (
not parsed_path.scheme
or parsed_path.scheme.lower() == "file"
or os.path.isfile(self.path)
):
return "local"
elif parsed_path.scheme.lower() in ["http", "https", "ftp"]:
return "url"
else:
raise FileSchemeError("Unknown scheme")
def _preprocess_text(self, text):
text = text.replace("\n", " ")
text = re.sub("\s+", " ", text)
text = text.encode("utf-8", "ignore").decode("utf-8", "ignore")
return text
def _generate_hash(self, string):
hash_object = hashlib.md5()
hash_object.update(string.encode("utf-8", "ignore"))
hex_dig = hash_object.hexdigest()
return hex_dig
def generate_paragraphs():
raise NotImplementedError
def generate_metadata():
raise NotImplementedError
class PDFProcessor(FileProcessor):
type = "pdf"
def __init__(self, path):
super().__init__(path)
def get_file_data(self, merge_length=200):
file = self._open_file()
file_metadata = self._get_file_metadata(file)
file_paragraphs = self._get_file_paragraphs(
file, file_metadata, start_page=1, end_page=None, merge_length=merge_length
)
file.close()
return file_metadata, file_paragraphs
def _get_file_metadata(self, file):
file_metadata = dict()
metadata = file.metadata
unique_string = str(Path(self.path).name) + metadata["title"]
file_metadata["id"] = self._generate_hash(unique_string)
file_metadata["title"] = metadata["title"]
file_metadata["author"] = metadata["author"]
file_metadata["subject"] = metadata["subject"]
file_metadata["creation_date"] = metadata["creationDate"]
file_metadata["modification_date"] = metadata["modDate"]
file_metadata["n_pages"] = file.page_count
if self.file_scheme == "local":
file_metadata["url"] = str(Path(self.path).resolve())
else:
file_metadata["url"] = self.path
file_metadata["file_name"] = Path(self.path).name
file_metadata["short_name"] = Path(self.path).name
file_metadata["release_date"] = ""
file_metadata["report_type"] = ""
file_metadata["source"] = ""
return file_metadata
def _get_file_paragraphs(
self, file, file_metadata, start_page=1, end_page=None, merge_length=200
):
if end_page is None:
end_page = file_metadata["n_pages"]
file_paragraphs = []
for page_num in range(start_page - 1, end_page):
page = file.load_page(page_num)
blocks = page.get_text("blocks")
for block in blocks:
paragraph = self._process_block(
block, page, page_num + start_page, file_metadata["id"]
)
if paragraph is None:
continue
first_char = paragraph["content"][0]
if len(file_paragraphs) > 0:
if (
len(file_paragraphs[-1]["content"]) + len(paragraph["content"])
< merge_length
) or (first_char.islower() and first_char.isalpha()):
file_paragraphs[-1]["content"] += " " + paragraph["content"]
file_paragraphs[-1]["length"] = len(
file_paragraphs[-1]["content"]
)
else:
file_paragraphs.append(paragraph)
else:
file_paragraphs.append(paragraph)
return file_paragraphs
def _open_file(self):
if self.file_scheme == "url":
response = requests.get(self.path)
file = fitz.open(stream=io.BytesIO(response.content), filetype="pdf")
elif self.file_scheme == "local":
file = fitz.open(self.path)
return file
def _process_block(self, block, page, page_number, file_id):
x0, y0, x1, y1, content, block_no, block_type = block
if content.isspace() or block_type == 1:
return None
content = self._preprocess_text(content)
unique_content_string = "_".join(map(str, block))
paragraph_id = self._generate_hash(unique_content_string)
w, h = page.rect.width, page.rect.height
paragraph = {
"id": paragraph_id,
"document_id": file_id,
"content_type": "text" if block_type == 0 else "image",
"content": content,
"length": len(content),
"idx_block": block_no,
"page_number": page_number,
"x0": x0 / h,
"y0": y0 / w,
"x1": x1 / h,
"y1": y1 / w,
}
return paragraph
class HTMLProcessor(FileProcessor):
type = "html"
def __init__(self, path):
super().__init__(path)
def get_file_data(self):
pass
def _get_file_metadata(self):
pass
def _get_file_paragraphs(self):
pass
def _open_file(self):
if self.file_scheme == "url":
response = requests.get(self.path)
file = response.text
elif self.file_scheme == "local":
file = open(self.path, "r").read()
return file