File size: 5,109 Bytes
3335977
 
628e92e
3335977
 
 
136ef53
 
 
 
 
 
 
 
 
 
 
 
628e92e
3335977
136ef53
3335977
f6c51ca
3335977
628e92e
136ef53
34e6e4e
 
136ef53
 
 
 
 
 
 
 
f6c51ca
1357ff0
136ef53
f6c51ca
136ef53
 
 
 
 
 
 
 
 
 
 
 
 
 
628e92e
3335977
136ef53
 
3335977
 
136ef53
50e3e8a
 
fbdcb83
136ef53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef46332
628e92e
136ef53
 
3335977
 
 
628e92e
3335977
 
 
 
 
 
 
 
 
 
5720c76
3335977
 
 
 
 
 
8a85641
3335977
 
 
628e92e
3335977
8a85641
3335977
628e92e
3335977
628e92e
3335977
 
 
 
 
 
 
aa45e11
3335977
 
 
628e92e
3335977
 
 
 
 
 
 
aa45e11
3335977
 
 
 
 
 
 
 
 
 
 
01daa7a
3335977
 
 
 
 
 
628e92e
3335977
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
import tempfile
import os
import locale
import whisper
import datetime
import subprocess
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
import wave
import contextlib
from sklearn.cluster import AgglomerativeClustering
import numpy as np

device = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
COMPUTE_TYPE = "float32" 
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

num_speakers = 2
language = None
model_size = 'tiny'
model_name = model_size

def getpreferredencoding(do_setlocale = True):
    return "UTF-8"

locale.getpreferredencoding = getpreferredencoding
embedding_model = PretrainedSpeakerEmbedding(
    "speechbrain/spkrec-ecapa-voxceleb",
    device=torch.device("cpu"))
model = whisper.load_model(model_size).to(device)
audio = Audio()

def segment_embedding(segment,duration,path):
    start = segment["start"]
    # Whisper overshoots the end timestamp in the last segment
    end = min(duration, segment["end"])
    clip = Segment(start, end)
    waveform, sample_rate = audio.crop(path, clip)

    # Convert waveform to single channel
    waveform = waveform.mean(dim=0, keepdim=True)

    return embedding_model(waveform.unsqueeze(0))

def time(secs):
  return datetime.timedelta(seconds=round(secs))

@spaces.GPU
def transcribe(path, task):
    if path is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    
    if path[-3:] != 'wav':
        subprocess.call(['ffmpeg', '-i', path, "audio.wav", '-y'])
        path = "audio.wav"
    result = model.transcribe(path,fp16=False)
    segments = result["segments"]
    print(segments)
    with contextlib.closing(wave.open(path,'r')) as f:
        frames = f.getnframes()
        rate = f.getframerate()
        duration = frames / float(rate)
    
    embeddings = np.zeros(shape=(len(segments), 192))
    for i, segment in enumerate(segments):
        embeddings[i] = segment_embedding(segment,duration=duration,path=path)
    embeddings = np.nan_to_num(embeddings)
    clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
    labels = clustering.labels_
    output_text=""
    for i in range(len(segments)):
        segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
    for (i, segment) in enumerate(segments):
        if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
            output_text += "\n" + segment["speaker"] + ' ' + str(time(segment["start"])) + '\n'
        output_text += segment["text"][1:] + ' '
    return output_text



def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    return f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>'

def download_yt_audio(yt_url, filename):
    ydl_opts = {
        "format": "bestaudio/best",
        "outtmpl": filename,
        "postprocessors": [{
            "key": "FFmpegExtractAudio",
            "preferredcodec": "wav",
            "preferredquality": "192",
        }],
    }
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download([yt_url])

@spaces.GPU
def yt_transcribe(yt_url, task):
    html_embed_str = _return_yt_html_embed(yt_url)
    
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "audio.wav")
        download_yt_audio(yt_url, filepath)
        
        result = model.transcribe(audio, batch_size=BATCH_SIZE)
    
    return html_embed_str, result["text"]

demo = gr.Blocks(theme=gr.themes.Ocean())

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="VerbaLens Demo 1 : Prototype",
    description="Transcribe long-form microphone or audio inputs using WhisperX.",
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="VerbaLens Demo 1 : Prototype",
    description="Transcribe uploaded audio files using WhisperX.",
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs=["html", "text"],
    title="VerbaLens Demo 1 : Prototyping",
    description="Transcribe YouTube videos using WhisperX.",
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.queue().launch(ssr_mode=False)