Spaces:
Runtime error
Runtime error
File size: 840 Bytes
a5dda79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor
# Load the model and processor from HF Hub
model_name = "NickoSELI/blip2-indian-food-captioning-private-checkopt-mock1"
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=True)
# Define a prediction function
def predict(image):
inputs = processor(images=image, return_tensors="pt")
outputs = model.generate(**inputs)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
# Create a Gradio interface
interface = gr.Interface(
fn=predict,
inputs=gr.inputs.Image(type="pil"),
outputs="text",
title="Indian Food Captioning Model"
)
# Launch the interface
if __name__ == "__main__":
interface.launch()
|