Spaces:
Running
Running
File size: 9,903 Bytes
636b1bb 4f98275 636b1bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import streamlit as st
def display_projects():
st.title('My Projects')
# Define tab titles
tab_titles = [
"Resume & CV Crafter",
"Multi-Agent Job Search",
"Resume Easz",
"Job Easz",
"Bitcoin Lightning Optimization",
"National Infrastructure Monitoring",
"Stock Market Analysis",
"Twitter Trend Analysis",
"Restaurant Recommendation",
"ASL Translator",
"Squat Easy"
]
# Create tabs
tabs = st.tabs(tab_titles)
# Add content to each tab
with tabs[0]:
st.subheader("LLM-powered Resume & CV Crafter")
st.markdown("""
- **Description**: Developed AI platform combining LLaMA-3 70B and Deepseek R1 with low-temperature settings for stable, tailored resume and CV generation
- **Key Features**:
• Smart Matching Algorithm analyzing profiles against job requirements
• LaTeX-Powered Resumes with professional formatting
• Automated 4-paragraph Cover Letter Generation
• Performance Metrics evaluating match quality
- **Technical Achievements**:
• Implemented dual-agent architecture: LLaMA-3 8B for profile analysis and 70B for LaTeX generation
• Engineered JSON schema validation system for error-free template integration
• Achieved 5,000+ LinkedIn impressions with 80% reduction in creation time
- **Technologies**: Streamlit, GROQ API (LLaMA-3 70B), LaTeX, JSON Schema
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Resume_and_CV_crafter)
""")
with tabs[1]:
st.subheader("Multi-Agent Job Search System")
st.markdown("""
- **Description**: Built an AI-powered job search assistant using dual-LLaMA architecture for comprehensive job matching and analysis
- **Key Features**:
• Real-time scraping across LinkedIn, Glassdoor, Indeed, ZipRecruiter
• Advanced resume parsing and job matching
• Intelligent compatibility scoring system
- **Technical Achievements**:
• Developed batch processing pipeline handling 60+ positions/search
• Reduced job search time by 80% through accurate matching
• Implemented specialized agents for input processing, scraping, and analysis
- **Technologies**: GROQ API, jobspy, Streamlit, Pandas, LLMOps
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Multi_Agent_Job_search_and_match)
""")
with tabs[2]:
st.subheader("Resume Easz")
st.markdown("""
- **Description**: Created an AI-driven resume analysis and enhancement tool using LLaMA 3.3 model
- **Key Features**:
• Quick and in-depth resume analysis options
• Comprehensive skill gap analysis
• ATS compatibility optimization
• Multiple output formats (DOCX, HTML, TXT)
- **Technical Implementation**:
• Integrated GROQ API for advanced language processing
• Built visual diff system for resume changes
• Developed custom prompt engineering pipeline
- **Technologies**: GROQ API, Streamlit, Python, LLM
- **Reference**: [Link to Project](https://resume-easz.streamlit.app/)
""")
with tabs[3]:
st.subheader("Job Easz")
st.markdown("""
- **Description**: Engineered comprehensive job aggregation platform for data roles with advanced analytics
- **Technical Achievements**:
• Designed Airflow pipeline with exponential backoff retry (120-480s intervals)
• Optimized concurrent processing reducing runtime from 2h to 40min
• Processes ~3000 daily job listings across various data roles
- **Key Features**:
• Daily updates with comprehensive job role coverage
• Custom filtering by role and location
• Interactive dashboard for market trends
• Automated ETL pipeline
- **Technologies**: Python, Airflow, ThreadPoolExecutor, Hugging Face Datasets
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/job_easz)
""")
with tabs[4]:
st.subheader("Bitcoin Lightning Path Optimization")
st.markdown("""
- **Description**: Advanced payment routing optimization system for Bitcoin Lightning Network
- **Technical Achievements**:
• Developed ML classifiers achieving 98.77-99.10% accuracy
• Implemented tri-model consensus system for optimal routing
• Engineered ensemble models with 0.98 F1-scores
- **Implementation Details**:
• Created simulation environment for multi-channel transactions
• Optimized graph-based algorithms for payment routing
• Integrated with Lightning payment interceptor
- **Technologies**: XGBoost, Random Forest, AdaBoost, Graph Algorithms
""")
with tabs[5]:
st.subheader("National Infrastructure Monitoring")
st.markdown("""
- **Description**: Developed satellite imagery analysis system for infrastructure change detection
- **Technical Achievements**:
• Fine-tuned ViT+ResNet-101 ensemble on 40GB satellite dataset
• Achieved 85% accuracy in change detection
• Implemented 8 parallel GPU threads for enhanced performance
- **Key Features**:
• Temporal analysis with 1km resolution
• Interactive map interface with bounding box selection
• Automatic image chipping for 256x256 inputs
• Contrast adjustment optimization
- **Technologies**: Change ViT Model, Google Earth Engine, PyTorch, Computer Vision
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Data298)
""")
with tabs[6]:
st.subheader("Stock Market Analysis with OpenAI Integration")
st.markdown("""
- **Description**: Created comprehensive stock market analysis system with multilingual capabilities
- **Technical Achievements**:
• Built Spark streaming pipeline with 30% efficiency improvement
• Orchestrated Airflow Docker pipeline for Snowflake integration
• Developed bilingual GPT-3.5 chatbot for SQL query generation
- **Key Features**:
• Real-time financial metric calculations
• Custom indicator generation
• Multilingual query support
• Automated data warehousing
- **Technologies**: PySpark, Apache Airflow, Snowflake, OpenAI GPT-3.5
""")
with tabs[7]:
st.subheader("Twitter Trend Analysis")
st.markdown("""
- **Description**: Engineered comprehensive Twitter analytics platform using GCP services
- **Technical Achievements**:
• Developed GCP pipeline processing 40k tweets
• Achieved 40% efficiency improvement through custom Airflow operators
• Implemented real-time trend analysis algorithms
- **Key Features**:
• Automated ETL workflows
• Interactive Tableau dashboards
• Viral metrics tracking
• Engagement rate calculations
- **Technologies**: Google Cloud Platform, BigQuery, Apache Airflow, Tableau
""")
with tabs[8]:
st.subheader("Restaurant Recommendation System")
st.markdown("""
- **Description**: Built hybrid recommendation system combining multiple filtering approaches
- **Technical Achievements**:
• Created hybrid TF-IDF and SVD-based filtering system
• Achieved 43% improvement in recommendation relevance
• Reduced computation time by 65%
- **Key Features**:
• Location-based suggestions
• Personalized recommendations
• Interactive web interface
• Efficient matrix factorization
- **Technologies**: Collaborative Filtering, Content-Based Filtering, Flask, Folium
""")
with tabs[9]:
st.subheader("ASL Translator")
st.markdown("""
- **Description**: Developed real-time American Sign Language translation system
- **Technical Achievements**:
• Achieved 95% accuracy in real-time gesture interpretation
• Implemented adaptive hand skeleton GIF generator
• Optimized MediaPipe integration for point detection
- **Key Features**:
• Real-time hand tracking
• Visual feedback system
• Intuitive gesture recognition
• Accessible interface
- **Technologies**: MediaPipe Hand Detection, Random Forest, Hugging Face Platform
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/slr-easz)
""")
with tabs[10]:
st.subheader("Squat Easy")
st.markdown("""
- **Description**: Developed deep learning system for squat form analysis and error detection
- **Technical Achievements**:
• Engineered custom BiLSTM architecture in PyTorch
• Achieved 81% training and 75% test accuracy
• Implemented CUDA-based GPU acceleration
- **Key Features**:
• Real-time form analysis
• Six-type error classification
• Video processing pipeline
• Performance optimization
- **Technologies**: PyTorch, BiLSTM, CUDA, Object-Oriented Programming
- **Reference**: [Link to Project](https://github.com/niharpalem/squateasy_DL)
""") |